Skip to main content
Log in

Effect of Friction Stir Welding on Electrochemical Behavior of Pure Copper

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This study aims at investigating the effect of friction stir welding (FSW) on the electrochemical behavior of pure copper in 0.01 M borax solution (pH = 9.1). For this purpose, pure copper was welded with rotation speeds of 355 and 500 rpm and welding speeds of 20, 28 and 40 mm/min. Before any electrochemical measurements, evaluation of pure copper and welded pure copper microstructures was obtained by X-ray diffraction and scanning electron microscopy. Furthermore, the electrochemical behavior of the samples in 0.01 M borax solution was investigated by using open circuit potential measurements, potentiodynamic polarization tests, electrochemical impedance spectroscopy (EIS) and Mott–Schottky analysis. The results indicated that FSW led to reduction of the grain size of pure copper and improvement of resistance against the stir corrosion area. Also according to Mott–Schottky analysis, it was found that the calculated acceptor density decreased with decreasing the grain size of the stir zone. These results were consistent with the results of the potentiodynamic polarization and EIS measurements, evidencing that the electrochemical behavior of the stir zone enhanced with decreasing of the grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ni D R, Xiao B L, Ma Z Y, Qiao Y X, and Zheng Y G Corrosion properties of friction–stir processed cast NiAl bronze. Corros Sci 52 (2010) 1610.

    Article  Google Scholar 

  2. Squillace A, De Fenzo A, Giorleo G, Bellucci F, A comparison between FSW and TIG welding techniques: modifications of microstructure and pitting corrosion resistance in AA 2024-T3 butt joints. J Mater Process Technol 152 (2004) 97

    Article  Google Scholar 

  3. Paglia C S, and Buchheit R G, A look in the corrosion of aluminum alloy friction stir welds. Scripta Mater 58 (2008) 383.

    Article  Google Scholar 

  4. Proton V, Alexis J l, Andrieu E, Delfosse J, Lafont M-C, Blanc C, Characterisation and understanding of the corrosion behaviour of the nugget in a 2050 aluminium alloy Friction Stir Welding joint. Corros Sci 73 (2013) 130

  5. Sarvghad-Moghaddam M, Parvizi R, Davoodi A, Haddad-Sabzevar M, Imani A, Establishing a correlation between interfacial microstructures and corrosion initiation sites in Al/Cu joints by SEM–EDS and AFM–SKPFM. Corros Sci 79 (2014) 148.

    Article  Google Scholar 

  6. Fahimpour V, Sadrnezhaad S K, Karimzadeh F, Corrosion behavior of aluminum 6061 alloy joined by friction stir welding and gas tungsten arc welding methods. Mater Des 39 (2012) 329.

    Article  Google Scholar 

  7. Zeng R-C, Chen J, Dietzel W, Zettler R, dos Santos J F, Nascimento M L, Kainer K U, Corrosion of friction stir welded magnesium alloy AM50. Corros Sci 51 (2009) 1738

    Article  Google Scholar 

  8. Chen T, Xue W, Li Y, Liu X, Du J, Corrosion behavior of friction stir welded AZ31B magnesium alloy with plasma electrolytic oxidation coating formed in silicate electrolyte. Mater Chem Phys 144 (2014) 462

    Article  Google Scholar 

  9. Maggiolino S, Schmid C, Corrosion resistance in FSW and in MIG welding techniques of AA6XXX. J Mater Process Technol 197 (2008) 237.

    Article  Google Scholar 

  10. Park S H C, Sato Y S, Kokawa H, Okamoto K, Hirano S, Inagaki M, Corrosion resistance of friction stir welded 304 stainless steel. Scripta Mater 51 (2004) 101.

    Article  Google Scholar 

  11. Zhong Q, Yu L, Xiao Y, Wang Y, Zhou Q, and Zhong Q, The effect of grain size and Cl concentration on the passive behavior of Cu in borate buffer solution. Adv Mater Res 785 (2013) 928

    Article  Google Scholar 

  12. Sanad S H, Taman A R, Corrosion inhibition of copper and carbon steel in white petroleum oil. Surf Technol 23 (1984) 159

    Article  Google Scholar 

  13. Pourbaix M, Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd ed., NACE, Houston (1974).

    Google Scholar 

  14. Souto R M, Gonzalez S, Salvarezza R C, Arvia A J, Kinetics of copper passivation and pitting corrosion in Na2SO4 containing dilute NaOH aqueous solution. Electrochim Acta 39 (1994) 2619.

    Article  Google Scholar 

  15. Pérez Sánchez M, Barrera M, González S, Souto R M, Salvarezza R C, Arvia A J, Electrochemical behaviour of copper in aqueous moderate alkaline media, containing sodium carbonate and bicarbonate, and sodium perchlorate. Electrochim Acta 35 (1990) 1337.

    Article  Google Scholar 

  16. Laz M M, Souto R M, González S, Salvarezza , Arvia A J, The formation of anodic layers on annealed copper surfaces in phosphate-containing solutions at different pH. Electrochim Acta 37 (1992) 655.

    Article  Google Scholar 

  17. Khodaverdizadeh H, Mahmoudi A, Heidarzadeh A, and Nazari E, Effect of friction stir welding (FSW) parameters on strain hardening behavior of pure copper joints. Mater Des 35 (2012) 330.

    Article  Google Scholar 

  18. Lin J-W, Chang H-C, Wu M-H, Comparison of mechanical properties of pure copper welded using friction stir welding and tungsten inert gas welding. J Manufac Process 16 (2014) 296.

    Article  Google Scholar 

  19. Xue P, Xiao B L, Zhang Q, Ma Z Y, Achieving friction stir welded pure copper joints with nearly equal strength to the parent metal via additional rapid cooling. Scripta Mater 64 (2011) 1051.

    Article  Google Scholar 

  20. Khodaverdizadeh H, Heidarzadeh A, and Saeid T, Effect of tool pin profile on microstructure and mechanical properties of friction stir welded pure copper joints. Mater Des 45 (2013) 265.

    Article  Google Scholar 

  21. Pashazadeh H, Teimournezhad J, Masoumi A, Numerical investigation on the mechanical, thermal, metallurgical and material flow characteristics in friction stir welding of copper sheets with experimental verification. Mater Des 55 (2014) 619.

    Article  Google Scholar 

  22. Pashazadeh H, Masoumi A, and Teimournezhad J, Numerical modelling for the hardness evaluation of friction stir welded copper metals. Mater Des 49 (2013) 913.

    Article  Google Scholar 

  23. Hwang Y M, Fan P L, and Lin C H, Experimental study on Friction Stir Welding of copper metals. J Mater Process Technol 210 (2010) 1667.

    Article  Google Scholar 

  24. Badawy W A, and Ai-Kharafi F M, Corrosion behavior of brass alloys in aqueous solutions of different pH. Corrosion 55 (1999) 268.

    Article  Google Scholar 

  25. Burstein G T, A hundred years of Tafel’s Equation: 1905–2005. Corros Sci 47 (2005) 2858.

    Article  Google Scholar 

  26. Shim J J, and Kim J G, Copper corrosion in potable water distribution systems: influence of copper products on the corrosion behavior. Mater Lett 58 (2004) 2002.

    Article  Google Scholar 

  27. Sarlak H, Atapour M, and Esmailzadeh M, Corrosion behavior of friction stir welded lean duplex stainless steel. Mater Des 66 (2015) 209.

    Article  Google Scholar 

  28. Fattah-alhosseini A, and Imantalab O, Effect of accumulative roll bonding process on the electrochemical behavior of pure copper. J Alloys Compd 632 (2015) 48.

    Article  Google Scholar 

  29. Imantalab O, and Fattah-alhosseini A, Electrochemical and passive behaviors of pure copper fabricated by accumulative roll-bonding (ARB) process. J Mater Eng Perform 24 (2015) 2579.

    Article  Google Scholar 

  30. Wu H, Wang Y, Zhong Q, Sheng M, Du H, and Li Z, The semi-conductor property and corrosion resistance of passive film on electroplated Ni and Cu–Ni alloys. J Electroanal Chem 663 (2011) 59.

    Article  Google Scholar 

  31. Nakaoka K, Ueyama J, Ogura K, Photoelectrochemical behavior of electrodeposited CuO and Cu2O thin films on conducting substrates. J Electrochem Soc 151 (2004) C661.

    Article  Google Scholar 

  32. Hsu Y-K, Yu C-H, Chen Y-C, Lin Y-G, Fabrication of coral-like Cu2O nanoelectrode for solar hydrogen generation. J Power Sources 242 (2013) 541.

    Article  Google Scholar 

  33. Ling Y, Taylor M, Sharifiasl S, and Macdonald D D, The semiconducting properties and impedance analysis of passive films on copper in anoxic sulfide-containing solutions from the viewpoint of the point defect model. ECS Trans 50 (2013) 53.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Fattah-alhosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fattah-alhosseini, A., Taheri, A.H. & Keshavarz, M.K. Effect of Friction Stir Welding on Electrochemical Behavior of Pure Copper. Trans Indian Inst Met 69, 1423–1434 (2016). https://doi.org/10.1007/s12666-015-0701-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-015-0701-y

Keywords

Navigation