Skip to main content
Log in

Effect of high anodic polarization on the passive layer properties of superduplex stainless steel friction stir welds at different chloride electrolyte pH values and temperatures

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The conditions used for friction stir welding of duplex stainless steels determine the resulting mechanical and corrosion performance of the material. This study investigates the corrosion resistance of UNS S32750 and S32760 superduplex stainless steels (SDSSs) joined by friction stir welding, employing cyclic polarization, Mott-Schottky, and microscopy techniques for analysis. The microscopy images indicated the presence of a deleterious intermetallic phase after electrolytic etching of S32760, as well as decreased corrosion resistance. The presence of molybdenum in the steels promoted better passive behavior at low pH. The Mott-Schottky curves revealed p-n heterojunction behavior of the passive oxide. Images acquired after the polarization test by scanning electron microscopy showed higher passivation propensity with increases of temperature and pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.F. McGuire, Stainless Steels for Design Engineers, ASM International, Ohio, 2008.

    Google Scholar 

  2. S.S.M. Tavares, J.M. Pardal, L.D. Lima, I.N. Bastos, A.M. Nascimento, and J.A. de Souza, Characterization of microstructure, chemical composition, corrosion resistance and toughness of a multipass weld joint of superduplex stainless steel UNS S32750, Mater. Charact., 58(2007), No. 7, p. 610.

    Article  Google Scholar 

  3. R.S. Mishra and M.W. Ma, Friction stir welding and processing, Mater. Sci. Eng. R, 50(2005), No. 1–2, p. 1.

    Article  Google Scholar 

  4. M.K. Mishra, G. Gunasekaran, A.G. Rao, B.P. Kashyap, and N. Prabhu, Effect of multipass friction stir processing on mechanical and corrosion behavior of 2507 super duplex stainless steel, J. Mater. Eng. Perform., 26(2017), No. 2, p. 849.

    Article  Google Scholar 

  5. M. Atapour, H. Sarlak, and M. Esmailzadeh, Pitting corrosion susceptibility of friction stir welded lean duplex stainless steel joints, Int. J. Adv. Manuf. Technol, 83(2016), No. 5–8, p. 721.

    Article  Google Scholar 

  6. Z.Q. Zhang, H.Y. Jing, L.Y. Xu, Y.D. Han, L. Zhao, and J.L. Zhang, Influence of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel welding joints, Appl. Surf Sci., 394(2017), p. 297.

    Article  Google Scholar 

  7. T. Takei, M. Yabe, and F.G. Wei, Effect of cooling condition on the intergranular corrosion resistance of UNS S32506 duplex stainless steel, Corros. Sci., 122(2017), p. 80.

    Article  Google Scholar 

  8. F. Iacoviello, V. Di Cocco, and L.D. Agostino, Integranular corrosion susceptibility analysis in stainless steels (duplex) stainless steels, Procedia Struct. Integrity, 3(2017), p. 276.

    Article  Google Scholar 

  9. E.E. Oguzie, J.B. Li, Y.Q. Liu, D.M. Chen, Y. Li, K. Yang, and F.H. Wang, The effect of Cu addition on the electrochemical corrosion and passivation behavior of stainless steels, Electrochim. Acta, 55(2010), No. 17, p. 5028.

    Article  Google Scholar 

  10. M. Metikoš-Hukovic, R. Babic, Z. Grubač, Ž. Petrovic, and N. Lajçi, High corrosion resistance of austenitic stainless steel alloyed with nitrogen in an acid solution, Corros. Sci., 53(2011), No. 6, p. 2176.

    Article  Google Scholar 

  11. Z.Y. Cui, L.W. Wang, H.T. Ni, W.K. Hao, C. Man, S.S. Chen, X. Wang, Z.Y. Liu, and X.G. Li, Influence of temperature on the electrochemical and passivation behavior of 2507 super duplex stainless steel in simulated desulfurized flue gas condensates, Corros. Sci., 118(2017), p. 31.

    Article  Google Scholar 

  12. T.S. Li, L. Liu, B. Zhang, Y. Li, and F.H. Wang, Growth kinetics of metastable pits on sputtered nanocrystalline stainless steel, Corros. Sci., 124(2017), p. 46.

    Article  Google Scholar 

  13. G.T. Burstein, M. Carboneras, and B.T. Daymond, The temperature dependence of passivity breakdown on a titanium alloy determined by cyclic noise thermammetry, Electrochim. Acta, 55(2010), No. 27, p. 7860.

    Article  Google Scholar 

  14. M.V. Cardoso, S.T. Amaral, and E.M.A. Martini, Temperature effect in the corrosion resistance of Ni-Fe-Cr alloy in chloride medium, Corros. Sci., 50(2008), No. 9, p. 2429.

    Article  Google Scholar 

  15. P.D. Krell, S.X. Li, and H.B. Cong, Synergistic effect of temperature and HCl concentration on the degradation of AI-SI 410 stainless steel, Corros. Sci., 122(2017), p. 41.

    Article  Google Scholar 

  16. H.P. Leckie, Effect of pH on the stable passivity of stainless steels, Corrosion, 24(1968), No. 3, p. 70.

    Article  Google Scholar 

  17. K. Sugimoto and Y. Sawada, The role of molybdenum additions to austenitic stainless steels in the inhibition of pitting in acid chloride solutions, Corros. Sci., 17(1977), No. 5, p. 425.

    Article  Google Scholar 

  18. G.T. Burstein and B.T. Daymond, The remarkable passivity of austenitic stainless steel in sulphuric acid solution and the effect of repetitive temperature cycling, Corros. Sci., 51(2009), No. 10, p. 2249.

    Article  Google Scholar 

  19. C. Escrivà-Cerdán, E. Blasco-Tamarit, D.M. García-García, J. García-Antón, R. Akid, and J. Walton, Effect of temperature on passive film formation of UNS N08031 Cr-Ni alloy in phosphoric acid contaminated with different aggressive anions, Electrochim. Acta, 111(2013), p. 552.

    Article  Google Scholar 

  20. S.R. Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes, Plenum Press, New York, 1980.

    Book  Google Scholar 

  21. S. Mischler, A. Vogel, H.J. Mathieu, and D. Landolt, The chemical composition of the passive film on Fe24Cr and Fe24Cr11Mo studied by AES, XPS and SIMS, Corros. Sci., 32(1991), No. 9, p. 925.

    Article  Google Scholar 

  22. T.F.A. Santos, H.S. Idagawa, and A.J. Ramirez, Thermal history in UNS S32205 duplex stainless steel friction stir welds, Sci. Technol. Weld. Joining, 19(2014), No. 2, p. 150.

    Article  Google Scholar 

  23. H.S. Idagawa, T.F.A. Santos, and A.J. Ramirez, Differential evolution algorithm applied to FSW model calibration, J. Phys. Conf. Ser., 490(2014), No. 1, art. No. 012215.

    Google Scholar 

  24. T.F.A. Santos, E.A. Torres, T.F.C. Hermengildo, and A.J. Ramirez, Development of ceramic backing for friction stir welding and processing, Weld. Int., 30(2016), No. 5, p. 338.

    Article  Google Scholar 

  25. T.F.A. Santos, E.A. Torres, J.C. Lippold, and A.J. Ramirez, Detailed microstructural characterization and restoration mechanisms of duplex and superduplex stainless steel friction-stir-welded joints, J. Mater. Eng. Perform., 25(2016), No. 12, p. 5173.

    Article  Google Scholar 

  26. T.F.A. Santos, E.A. Torres, E.B. Fonseca, and A.J. Ramirez, Friction stir welding of duplex and superduplex stainless steels and some aspects of microstructural characterization and mechanical performance, Mater. Res., 19(2016), No. 1, p. 117.

    Article  Google Scholar 

  27. ASTM International, ASTM A923-14: Standard Test Methods for Detecting Detrimental Intermetallic Phase in Duplex Austenitic/Ferritic Stainless Steels, West Conshohocken, PA, 2014.

    Google Scholar 

  28. T.F.A. Santos, R.R. Marinho, M.T.P. Paes, and A.J. Ramirez, Microstructure evaluation of UNS S32205 duplex stainless steel friction stir welds, Rem: Rev. Esc. Minas, 66(2013), No. 2, p. 187.

    Google Scholar 

  29. E.M. Westin, Microstructure and Properties of Welds in the Lean Duplex Stainless Steel LDX 2101 [Dissertation], Royal Institute of Technology, Stockholm, 2010.

    Google Scholar 

  30. W.S. Tait, An Introduction to Eletrochemical Corrosion Testing For Practicing Engineers and Scientists, Pair O Docs Pubns, Racine, 1994.

    Google Scholar 

  31. G.T. Burstein, A hundred years of Tafel’s Equation: 1905–2005, Corros. Sci., 47(2005), p. 2858.

    Article  Google Scholar 

  32. N. Takeno, Atlas of Eh-pH Diagrams: Intercomparison of Thermodynamic Databases, Geological Survey of Japan Open File Report No. 419, National Institute of Advanced Industrial Science and Technology, Tokyo, 2005

    Google Scholar 

  33. P.C. Pistorius and G.T. Burstein, Metastable pitting corrosion of stainless steel and the transition to stability, Philos. Trans. R. Soc. A, 341(1992), p. 531.

    Article  Google Scholar 

  34. C.O.A. Olsson and D. Landolt, Passive films on stainless steels—chemistry, structure and growth, Electrochim. Acta, 48(2003), No. 9, p. 1093.

    Article  Google Scholar 

  35. G.T. Burstein and D. Sazou, Passivity and Localized Corrosion, Elsevier Inc., 2016. doi: https://doi.org/10.1016/B978-0-12-803581-8.01589-7.

    Book  Google Scholar 

  36. I. Betova, M. Bojinov, T. Laitinen, K. Mäkelä, P. Pohjanne, and T. Saario, The transpassive dissolution mechanism of highly alloyed stainless steels I. Experimental results and modelling procedure, 44(2002), No. 2, p. 2675.

    Google Scholar 

  37. H. Sarlak, M. Atapour, and M. Esmailzadeh, Corrosion behavior of friction stir welded lean duplex stainless steel, Mater. Des., 66(2015), p. 209.

    Article  Google Scholar 

  38. N.E. Hakiki, B. Maachi, F. Mechehoud, C. Pirri, A. Mehdaoui, and J.L. Bubendorff, Structural and semiconductive investigation of passive films and thermally grown oxides on stainless steels, [in] 7th European Stainless Steel Conference, Como, 2011, p. 58.

    Google Scholar 

  39. S. Fujimoto and H. Tsuchiya, Semiconductor Property of Passive Films and Corrosion Behavior of Fe-Cr Alloys, [In] Y. Waseda, S. Suzuki, Eds., Characterization of Corrosion Products on Steel Surfaces, Springer, Berlin, Heidelberg, 2006, p. 33.

    Chapter  Google Scholar 

  40. L.V. Taveira, M.F. Montemor, M. Da Cuhha Belo, M.G. Ferreira, and L.F.P. Dick, Influence of incorporated Mo and Nb on the Mott-Schottky behaviour of anodic films formed on AISI 304L, Corros. Sci., 52(2010), No. 9, p. 2813.

    Article  Google Scholar 

  41. N.B. Hakiki, S. Boudin, B. Rondot, and M. Da Cunha Belo, The electronic structure of passive films formed on stainless steels, Corros. Sci., 37(1995), No. 11, p. 1809.

    Article  Google Scholar 

  42. S. Ningshen, U.K. Mudali, V.K. Mittal, and H.S. Khatak, Semiconducting and passive films properties of nitrogen-containing type 316LN stainless steel, Corros. Sci., 49(2007), No. 2, p. 481.

    Article  Google Scholar 

  43. E.C. Paredes, A. Bautista, S.M. Alvarez, and F. Velasco, Influence of the forming process of corrugated stainless steels on their corrosion behaviour in simulated pore solutions, Corros. Sci., 58(2012), p. 52.

    Article  Google Scholar 

  44. L. Wang, C.Y. Lee, and P. Schmuki, Solar water splitting: preserving the beneficial smaller feature size in porous α-Fe2O3 photoelectrodes during annealing, J. Mater. Chem. A, 1(2012), No. 2, p. 212.

    Article  Google Scholar 

  45. D.R. Chowdhury, L. Spiccia, S.S. Amritphale, A. Paul, and A. Singh, A robust iron oxyhydroxide water oxidation catalyst operating under near neutral and alkaline conditions, J. Mater. Chem. A, 4(2016), No. 10, p. 3655.

    Article  Google Scholar 

  46. C.Y. Lin, D. Mersch, D.A. Jefferson, and E. Reisner, Cobalt sulphide microtube array as cathode in photoelectrochemical water splitting with photoanodes, Chem. Sci., 5(2014), No. 12, p. 4906.

    Article  Google Scholar 

  47. L. Tan and Y. Yang, In situ phase transformation of Laves phase from Chi-phase in Mo-containing Fe-Cr-Ni alloys, Mater. Lett., 158(2015), p. 233.

    Article  Google Scholar 

  48. I.J. Marques, A.A. Vicente, J.A.S. Tenório, and T.F.A. Santos, Double kinetics of intermetallic phase precipitation in UNS S32205 duplex stainless steels submitted to isothermal heat treatment, Mater. Res., 20(2017), Suppl. 2, p. 152.

    Article  Google Scholar 

  49. S.B. Kim, K.W. Paik, and Y.G. Kim, Effect of Mo substitution by W on high temperature embrittlement characteristics in duplex stainless steels, Mater. Sci. Eng. A, 247(1998), No. 1–2, p. 67.

    Article  Google Scholar 

  50. J.S. Kim and H.S. Kwon, Effects of tungsten on corrosion and kinetics of sigma phase formation of 25% chromium duplex stainless steels, Corrosion, 55(1999), No. 5, p. 512.

    Article  Google Scholar 

  51. A.R. Akisanya, U. Obi, and N.C. Renton, Effect of ageing on phase evolution and mechanical properties of a high tungsten super-duplex stainless steel, Mater. Sci. Eng. A, 535(2012), p. 281.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank FACEPE, CNPq, and UFPE for financial support, and CETENE for electrochemical measurements. The SDSS steel plates were kindly donated by Outokumpu (S32750) and Weir Materials (S32760). Scholarships were provided by CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. F. A. Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santa-Cruz, L.A., Machado, G., Vicente, A.A. et al. Effect of high anodic polarization on the passive layer properties of superduplex stainless steel friction stir welds at different chloride electrolyte pH values and temperatures. Int J Miner Metall Mater 26, 710–721 (2019). https://doi.org/10.1007/s12613-019-1790-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1790-0

Keywords

Navigation