Skip to main content
Log in

Microstructural, Magnetic and Electrical Properties of Ni2FeGa Heusler Alloys

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Ni2FeGa polycrystalline alloys are synthesized by arc melting into single phase β structure and two phase mixture of γ-phase (fcc) and austenite (L21). Annealing improves atomic ordering and β transforms to L21 ordered structure. Effect of alloy composition and processing condition on different phase formation, microstructural, magnetic and electrical properties are discussed. The alloy undergoes first order austenite to martensitic phase transformation at 225 K with low hysteresis of 10 K. The resistivity exhibits a jump upon martensite transformation. This increase in resistivity is being attributed to the change in effective mass of electron upon martensite transformation. The temperature dependent resistivity curve for both austenite and martensite varies linearly with αT suggesting strong electron–phonon scattering. The slope of temperature dependent resistivity curve is higher in case of austenite than that of martensite and is attributed to the increasing role of electron–phonon scattering at high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Huang Y J, Hu Q D, Bruno N, Karaman I ,and Li J G, Mater Lett 114 (2014) 11.

    Article  Google Scholar 

  2. Biswas A, Singh G, Sarkar S, Krishnan M, and Ramamurty U, Intermetallics 54 (2014) 69.

    Article  Google Scholar 

  3. Qian J F, Zhang H G, Chen J L, Wang W H, and Wu G H, J Crystal Growth 388 (2014) 107.

    Article  Google Scholar 

  4. Sánchez-Alarcos V, Pérez-Landazábal J I, Recarte V, RodríguezVelamazán J A, and Chernenko V A, J Phys Condens Matter 22 (2010) 166001.

    Article  Google Scholar 

  5. Xuan H C, Xie K X, Wang D H, Han Z D, Zhang C L, Gu B X, and Du Y W, Appl Phys Lett 92 (2008) 242506.

    Article  Google Scholar 

  6. Heczko O, Fahler S, Vasilchikova T M, Voloshok T N, Klimov K V, Chumlyakov Y I, and Vasiliev A N, Phys Rev B 77 (2008) 174402.

    Article  Google Scholar 

  7. Aich S, Das S, Al-Omari I A, Alagarsamy P, Chowdhury S G, Chakraborty M, Shield J E, and Shellmyer D J, J Appl Phys 105 (2009) 07A943.

    Article  Google Scholar 

  8. Liu Q H, Liu J, Huang Y J, Hu Q D, and Li J G, J Alloys Compd 571 (2013) 186.

    Article  Google Scholar 

  9. Sehitoglu H, Wang J, and Maier H J, Inter. J Plast 39 (2012) 61.

    Article  Google Scholar 

  10. Sharma V K, Chattopadhyaya M K, Kumar R, Ganguli T, Kaul R, Majumdar S, and Roy S B, J Phys D Appl Phys 40 (2007) 3292.

    Article  Google Scholar 

  11. Prasad R V S, Raja M M, and Phanikumar G, Intermetallics 25 (2012) 42.

    Article  Google Scholar 

  12. Nath H, and Phanikumar G, Mater Sci Forum 790–791 (2014) 199.

    Article  Google Scholar 

  13. Prasad R V S, Srinivas M, Raja M M, and Phanikumar G, Metall Mater Trans A 45 (2014) 2161.

    Article  Google Scholar 

  14. Chatterjee S, Singh V R, Deb A K, Giri S, De S K, Dasgupta I, and Majumdar S, J Magn Magn Mater 322 (2010) 102.

    Article  Google Scholar 

  15. Liu Z H, Hu H N, Liu G D, Cui Y T, Zhang M, Chen J L, Wu G H, and Xiao G, Phys Rev B 69 (2004) 134415.

    Article  Google Scholar 

  16. Nath H, and Phanikumar G, doi:10.1007/s 11661-015-3098-7.

  17. Liu Z H, Zhang M, Cui Y T, Zhou Y Q, Wang W H, Wu G H, Zhang X X, and Xiao G, Appl Phys Lett 82 (2003) 424.

    Article  Google Scholar 

  18. Graf T, Casper F, Winterlik J, Balke B, Fecher G H, and Felser C, Z Anorg Allg Chem 635 (2009) 976.

    Article  Google Scholar 

  19. Brown P J, Bargawi A Y, Crangle J, Neumann K U, and Ziebeck K R A, J Phys Condes Matter 11 (1999) 4715.

    Article  Google Scholar 

  20. Sahariah M B, Ghosh S, Singh C S, Gowtham S, and Pandey R, J Phys Condens Matter 25 (2013) 025502.

    Article  Google Scholar 

Download references

Acknowledgments

Authors like to thank Prof. P. N. Santosh, Prof. R. Nirmala, Dr. Ganesh Raj and Mr. Rajib Mondal, Department of Physics IIT Madras for their kind help in resistivity measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hrusikesh Nath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, H., Phanikumar, G. Microstructural, Magnetic and Electrical Properties of Ni2FeGa Heusler Alloys. Trans Indian Inst Met 69, 1389–1396 (2016). https://doi.org/10.1007/s12666-015-0691-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-015-0691-9

Keywords

Navigation