Skip to main content
Log in

Simulated Isothermal Crystallization Kinetics from Non-Isothermal Experimental Data

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the present work, a new simple and robust approach, named ‘simulated isothermal’ technique, is proposed for getting isothermal transformation behavior of crystallization of glassy alloys at temperatures well above the normal crystallization temperatures (T x ) from a set of non-isothermal differential scanning calorimetric (DSC) scans performed at different heating rates. The isothermal and simulated isothermal kinetic data for the crystallization of glassy alloys compare well. The problem of finding small heat change on crystallization during isothermal DSC scans below T x is avoided in the present approach, since it uses non-isothermal DSC scans, which is associated with large heat change on crystallization. It also enables to get complete understanding of the mechanism of crystallization of glassy alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Amrami M, J Chem Phys 7 (1939) 1103.

    Article  Google Scholar 

  2. Avrami M, J Chem Phys 8 (1940) 212.

    Article  Google Scholar 

  3. Avrami M, J Chem Phys 9 (1941) 177.

    Article  Google Scholar 

  4. Johnson WA, Mehl RF, Trans Am Inst Mining Met Engrs 135 (1939) 416.

    Google Scholar 

  5. Kolmogorov AN, Bull Acad Sci USSR 1 (1937) 355.

    Google Scholar 

  6. Henderson DW, J Non Cryst Sol 30 (1979) 301.

    Article  Google Scholar 

  7. Kruger P, J Phys Chem Solids 54 (1993) 1549.

    Article  Google Scholar 

  8. Woldt E, J Phys Chem Solids 53 (1992) 521.

    Article  Google Scholar 

  9. Blazquez JS, Conde CF, Conde A, Acta Mater 53 (2005) 2305.

    Article  Google Scholar 

  10. Yan Z, Dang S, Wang X, Lian P, Trans Nonferrous Met Soc China 18 (2008) 138.

    Article  Google Scholar 

  11. Yuan ZZ, Chen XD, Wang BX, Chen ZJ, J Alloys Compd 399 (2005) 166.

    Article  Google Scholar 

  12. Wu X, Meng L, Zhao W, Qiu K, J Rare Earths 25 (2007) 189.

    Article  Google Scholar 

  13. Wei H, Bao Q, Wang C, Zhang W, Yuan ZZ, Chen X, J Non-Cryst Solids 354 (2008) 1876.

    Article  Google Scholar 

  14. Wang S, Zhu C, Quan S, Li Y, Wang Y, Wang Q, Dong C, Trans Nonferrous Met Soc China 19 (2009) 1618.

    Article  Google Scholar 

  15. Qiao JC, Pelletier JM, J Non-Cryst Solids 357 (2011) 2590.

    Article  Google Scholar 

  16. Jain R, Saxena NS, Bhandari D, Sharma SK, Rao KVR, Physica B 301 (2001) 341.

    Article  Google Scholar 

  17. Illekovfi E, Thermochim Acta 280281 (1996) 289.

    Article  Google Scholar 

  18. Abdel-Rahim MA, Abdel-Latief AY, Soltan AS, Abu El-Oyoun M, Physica B 322 (2002) 252.

    Article  Google Scholar 

  19. Aji DPB, Johari GP, Thermochim Acta 510 (2010) 144.

    Article  Google Scholar 

  20. Cao QP, Liu JW, Li JF, Zhou YH, Wang XD, Jiang JZ, J Non-Cryst Solids 357 (2011) 1182.

    Article  Google Scholar 

  21. Biswas K, Ram S, Schultz L, Eckert J, J Alloys Compd 397 (2005) 104.

    Article  Google Scholar 

  22. Abu El-Oyoun M, J Phys Chem Solids 61 (2000) 1653.

  23. Shiwen H, Yong L, Baiyun H, Zhantao L, Hong W, J Mater Process Technol 204 (2008) 179.

    Article  Google Scholar 

  24. Kissinger HE, J Res Natl Bur Stand 57 (1956) 217.

    Article  Google Scholar 

  25. Kissinger HE, Analy Chem 29 (1957) 1702.

    Article  Google Scholar 

  26. Augis JA, Bennet JE, J Therm Anal 13 (1978) 283.

    Article  Google Scholar 

  27. Takhor RL. Advance in nucleation and crystallization of glasses, American Ceramic Society, Columbus (1972).

    Google Scholar 

  28. Mohan NS, Chen R, J Phys D 3 (1970) 243.

    Article  Google Scholar 

  29. Tang W, Liu Y, Zhang H, Wang C, Thermochim Acta 408 (2003) 39.

    Article  Google Scholar 

  30. Liu F, Sommer F, Mittemeijer EJ, J Mater Sci 39 (2004) 1621.

    Article  Google Scholar 

  31. Calventus Y, Surinach S, Baro MDm, J. Phys 8 (1996) 927.

  32. Ranganathan S, Heimendahl MV, J Mater Sci 16 (1981) 2401.

    Article  Google Scholar 

  33. Pratap A, Raval KG, Gupta A, Kulkarni SK, Bull Mater Sci 23 (2000) 185.

    Article  Google Scholar 

  34. Ganesh JB, Raju S, Rai AK, Vijayalakshmi M, Trans IIM 64 (2011) 93.

    Google Scholar 

  35. Zhuang YX, Duan TF, Shi HY, J Alloys Compd 509 (2011) 9019.

    Article  Google Scholar 

Download references

Acknowledgments

The authors highly appreciate the financial assistance from Naval Research Board, Govt. of India (Project no—NRB /MET /20090196). The authors would like to thank Mohd. Arshad, Department of Mathematics and Statistics and Mr. Sayak Bhaumik, Department of Electrical Engineering, Indian Institute of Technology, Kanpur, India—208016 for their help in data processing and mathematical operations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Chattopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chattopadhyay, C., Sarkar, S., Sangal, S. et al. Simulated Isothermal Crystallization Kinetics from Non-Isothermal Experimental Data. Trans Indian Inst Met 67, 945–958 (2014). https://doi.org/10.1007/s12666-014-0422-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-014-0422-7

Keywords

Navigation