Skip to main content
Log in

Some novel perspectives of iso-conversional analysis in the study of Meyer–Neldel energy for thermally governed crystallization by using Johnson–Mehl–Avrami (JMA) theory

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The search for any correlation between the iso-kinetic relationship (IKR) and the Meyer–Neldel rule (also known as the compensation effect) is a key problem in the area of physics, chemistry, and physical chemistry. The iso-kinetic relationship (IKR) and the Meyer–Neldel compensation rule (MNCR) seem to be valid for a diversified range of materials, but the true understanding of what is the exact connection between IKR and MNCR is still an unresolved puzzle. Various researchers believed that both effects be two sides of the same coin. The iso-conversion study of solid-state reactions using non-isothermal calorimetric measurements is famous over the globe in the scientific community. It is a standard noteworthy tool to attain qualitative and quantitative analysis of the consequences of the different kinds of solid-state reactions. This endeavor aims to explore some novel insights in MNCR and its connection with IKR by considering thermally activated crystallization. For this, we have started our analysis by using JMA theory and scrutinized the relationship between Arrhenius parameters (crystallization activation energy and rate of crystal growth) for the different situations using the iso-conversional thermal analysis. Further, our results confirm the analogy between MNCR and IKR by comparing the Meyer–Neldel and iso-kinetic temperatures for thermally controlled crystallization that follows an Arrhenius temperature dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yan QL, Zeman S, Zhang JG, Qi XF, Li T, Musil T. Multistep thermolysis mechanisms of azido-s-triazine derivatives and kinetic compensation effects for the rate-limiting processes. J Phys Chem C. 2015;119:14861–72.

    Article  CAS  Google Scholar 

  2. Kim BJ, Yu H, Oh JH, Kang MS, Cho JH. Electrical transport through single nanowires of dialkyl perylene diimide. J Phys Chem C. 2013;117:10743–9.

    Article  CAS  Google Scholar 

  3. Naffakh M, Marco C, Gomez MA, Jimenez I. Unique nucleation activity of inorganic fullerene-like WS2 nanoparticles in polyphenylene sulfide nanocomposites: isokinetic and isoconversional study of dynamic crystallization kinetics. J Phys Chem B. 2009;113:7107–15.

    Article  CAS  Google Scholar 

  4. Freed KF. Entropy−enthalpy compensation in chemical reactions and adsorption: an exactly solvable model. J Phys Chem B. 2011;115:1689–92.

    Article  CAS  Google Scholar 

  5. Morishita T, Nakamura T, Shinoda W, Ito AM. Isokinetic approach in logarithmic mean-force dynamics for on-the-fly free energy reconstruction. Chem Phys Lett. 2018;706:633–40.

    Article  CAS  Google Scholar 

  6. Vyazovkin S, Linert W. The application of isoconversional methods for analyzing isokinetic relationships occurring at thermal decomposition of solids. J Solid State Chem. 1995;114:392–8.

    Article  CAS  Google Scholar 

  7. Belskii VE. Isokinetic relationships for nucleophilic substitution reactions at the saturated carbon atom Reactions in aqueous solutions. Russ Chem Bull. 2000;49:806–11.

    Article  CAS  Google Scholar 

  8. Rego F, Dias APS, Casquilho M, Rosa FC, Rodrigues A. Pyrolysis kinetics of short rotation coppice poplar biomass. Energy. 2020;207:118191.

    Article  CAS  Google Scholar 

  9. Lyon RE. Isokinetic analysis of reaction onsets. Thermochim Acta. 2022;708:179117.

    Article  CAS  Google Scholar 

  10. Lyon RE. Isokinetics. J Phys Chem A. 2019;123:2462–9.

    Article  CAS  Google Scholar 

  11. Starikov EB. “Meyer–Neldel Rule”: true history of its development and its intimate connection to classical thermodynamics. J App Sol Chem Mod. 2014;3:15–31.

    Article  Google Scholar 

  12. Sedivy L, Belas E, Grill R, Musiienko A, Vasylchenko I. Extension of Meyer–Neldel rule using chemical diffusion experiments in CdTe. J Alloys Comp. 2019;788:897–904.

    Article  CAS  Google Scholar 

  13. Shcherbak L, Kopach O, Fochuk P, Bolotnikov AE, James RB. Empirical correlations between the Arrhenius parameters of impurities diffusion coefficients in CdTe crystals. J Phase Equilibria Diffusion. 2015;36:99–109.

    Article  CAS  Google Scholar 

  14. Kotomin E, Kuzovkov V, Popov AI, Maier J, Vila R. Anomalous kinetics of diffusion-controlled defect annealing in irradiated ionic solids. J Phys Chem A. 2018;122:28–32.

    Article  CAS  Google Scholar 

  15. Fishchuk II, Bassler H, Kohler A, Genoe J, Kadashchuk A. Unraveling the role of multiphonon excitations and disorder concerning the Meyer–Neldel type compensation effect in organic semiconductors. Phys Rev Appl. 2018;10:054063.

    Article  CAS  Google Scholar 

  16. He Q, Xu X, Gu Y, Cheng X, Xu J, Jiang Y. Single-walled carbon nanotube-controlled Meyer−Neldel rules in vanadium oxide films for applications as thermistor materials in sensors and detectors. ACS Appl Nano Mater. 2018;1:6959–66.

    Article  CAS  Google Scholar 

  17. Krongauz VV. Compensation effect: sublimation, diffusion in polymers, polymer degradation. J Therm Anal Calorim. 2019;138:3425–44.

    Article  CAS  Google Scholar 

  18. Sapunov VN, Saveljev EA, Voronov MS, Valtiner M, Linert W. The basic theorem of temperature-dependent processes. Thermo. 2021;1:45–60.

    Article  Google Scholar 

  19. Ullah M, Pivrikas A, Fishchuk II, Kadashchuk A, Stadler P, Simbrunner C, Sariciftci NS, Sittera H. Electric field and grain size dependence of Meyer–Neldel energy in C60 films. Synth Met. 2011;161:1987–90.

    Article  CAS  Google Scholar 

  20. Jones AG. Compensation of the Meyer–Neldel compensation law for H diffusion in minerals. Geochem Geophys Geosys. 2014;15:2616–31.

    Article  Google Scholar 

  21. Polfus JM, Peters T, Bredesena R, Lovvik OM. Vacancy diffusion in palladium hydrides. Phys Chem Chem Phys. 2021;23:13680–6.

    Article  CAS  Google Scholar 

  22. Seguini G, Zanenga F, Cannetti G, Perego M. Thermodynamics and ordering kinetics in asymmetric PS-b-PMMA block copolymer thin films. Soft Matter. 2020;16:5525–33.

    Article  CAS  Google Scholar 

  23. Mianowski A, Radko T, Siudyga T. Kinetic compensation effect of isoconversional methods. Reac Kinet Mech Cat. 2021;132:37–58.

    Article  CAS  Google Scholar 

  24. Taskesen T, Pareek D, Neerken J, Schoneberg J, Hirwa H, Nowak D, Parisi J, Gutay L. The effect of excess selenium on the opto-electronic properties of Cu2ZnSnSe4 prepared from Cu–Sn alloy precursors. RSC Adv. 2019;9:20857–64.

    Article  CAS  Google Scholar 

  25. He H, Liu Y, Yin J, Wang X, Lin X, Zhang S. Introducing effective temperature into Arrhenius equation with Meyer–Neldel rule for describing both Arrhenius and non-Arrhenius dependent drain current of amorphous InGaZnO TFTs. Solid-State Elect. 2021;181:108011.

    Article  Google Scholar 

  26. Muy S, Bachman J, Chang HH, Giordano L, Maglia F, Lupart S, Lamp P, Zeier WG, Shao-horn Y. Lithium conductivity and Meyer–Neldel Rule in Li3PO4-Li3VO4-Li4GeO4 lithium superionic conductors. Chem Mater. 2018;30:5573–82.

    Article  CAS  Google Scholar 

  27. Han Z, Wang M. Analysis of the Meyer–Neldel rule based on a temperature-dependent model for thin-film transistors. IEEE Trans Electron Devices. 2017;64:145–52.

    Article  CAS  Google Scholar 

  28. Stallinga P, Gomes HL. Trap states as an explanation for the Meyer Neldel rule in semiconductors. Org Elect. 2005;6:137141.

    Article  Google Scholar 

  29. Wang J, Yellezuome D, Zhang Z, Liu S, Lu J, Zhang P, Zhang S, Wen P, Rahman MM, Li C, Cai J. Understanding pyrolysis mechanisms of pinewood sawdust and sugarcane bagasse from kinetics and thermodynamics. Ind Crops Prod. 2022;177:114378.

    Article  CAS  Google Scholar 

  30. Hudson EA, Campos de Paula HM, Coelho Y, Glanzmann N, da Silva AD, da Silva LHM, Cla A. The kinetics of formation of resveratrol-β-cyclodextrin-NH2 and resveratrol analog-β-cyclodextrin-NH2 supramolecular complexes. Food Chem. 2022;366:130612.

    Article  Google Scholar 

  31. Liu L, Guo QX. Isokinetic relationship, isoequilibrium relationship, and enthalpy-entropy compensation. Chem Rev. 2001;101:673–95.

    Article  CAS  Google Scholar 

  32. Du P, Li P, Ling X, Fan Z, Braun A, Yang W, Chen Q, Yelon A. Optimizing the proton conductivity with the isokinetic temperature in perovskite-type proton conductors according to Meyer–Neldel rule. Adv Energy Mater. 2022;12:2102939.

    Article  CAS  Google Scholar 

  33. Gao Y, Li N, Wu Y, Yang W. Rethinking the design of ionic conductors using Meyer-Neldel-conductivity plot. Adv Energy Mater. 2021;11:2100325.

    Article  CAS  Google Scholar 

  34. Borisenko KB, Shanmugam J, Williams BAO, Ewart P, Gholipour B, Hewak DW, Hussain R, Javorfi T, Siligardi G, Kirkland AI. Photo-induced optical activity in phase-change memory materials. Sci Rep. 2015;5:8770.

    Article  CAS  Google Scholar 

  35. Hamann H, O’Boyle M, Martin YC, Rooks M, Wickramasinghe HK. Ultra-high density phase-change storage and memory. Nature Mater. 2006;5:383–7.

    Article  CAS  Google Scholar 

  36. Hegedus J, Elliot SR. Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. Nature Mater. 2008;7:399–405.

    Article  CAS  Google Scholar 

  37. Wuttig M, Yamada N. Phase-change materials for rewriteable data storage. Nature Mat. 2007;6:824–32.

    Article  CAS  Google Scholar 

  38. Zhang W, Mazzarello R, Wuttig M, Ma E. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat Rev Mater. 2019;4:150–68.

    Article  CAS  Google Scholar 

  39. Orava J, Greer A, Gholipour B, Hewak DW, Smith CE. Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. Nature Mater. 2012;11:279–83.

    Article  CAS  Google Scholar 

  40. Perez-Maqueda LA, Criado JM, Malek J. Combined kinetic analysis for crystallization kinetics of non-crystalline solids. J Non-Cryst Solids. 2003;320:84–91.

    Article  CAS  Google Scholar 

  41. Bennett T, Yue Y, Li P, Qiao A, Tao H, Greaves NG, Richards T, Lampronti GI, Redfern SAT, Blanc F, Farha O, Hupp J, Cheetham A, Keen D. Melt-quenched glasses of metal-organic frameworks. J Am Chem Soc. 2016;138:3484–92.

    Article  CAS  Google Scholar 

  42. Qiao C, Guo YR, Dong F, Wang J, Shen H, Wang S, Xu M, Miao X, Zheng Y, Zhang R, Chen L, Wang C, Ho K. Evolution of short and medium-range order in the melt-quenching amorphization of Ge2Sb2Te5. J Mater Chem C. 2018;6:5001–11.

    Article  CAS  Google Scholar 

  43. Brand MC, Greenwell F, Clowes R, Egleston BD, Kai A, Cooper A, Bennett T, Greenaway RL. Melt-quenched porous organic cage glasses. J Mater Chem A. 2021;9:19807–16.

    Article  CAS  Google Scholar 

  44. Mehta N. Characterization techniques for the study of thermally activated phase Transitions and determination of thermo-physical/kinetic properties. In: Pekar Libor, editor. Advanced analytic and control techniques for thermal systems with heat exchangers. Elsevier; 2020.

    Google Scholar 

  45. Greer A. New horizons for glass formation and stability. Nature Mater. 2015;14:542–6.

    Article  CAS  Google Scholar 

  46. Rios C, Stegmaier M, Hosseini P, Wang D, Scherer T, Wright CD, Bhaskaran H, Pernice WHP. Integrated all-photonic non-volatile multi-level memory. Nature Photon. 2015;9:725–2.

    Article  CAS  Google Scholar 

  47. Ding K, Chen B, Chen Y, Wang J, Shen X, Rao F. Recipe for ultrafast and persistent phase-change memory materials. NPG Asia Mater. 2020;12:63.

    Article  Google Scholar 

  48. Simon AA, Badamchi B, Subbaraman H, Sakaguchi Y, Jones L, Kunold H, Rooyen IJV, Mitkova M. Introduction of chalcogenide glasses to additive manufacturing: Nanoparticle ink formulation, inkjet printing, and phase change devices fabrication. Sci Rep. 2021;11:14311.

    Article  Google Scholar 

  49. Dohare C, Mehta N. Iso-conversional approach for study of glass transition and crystallization kinetics of ternary glassy Se98−xAg2Inx (x = 0, 2, 4, 6) system. J Alloys Compd. 2014;587:565–72.

    Article  CAS  Google Scholar 

  50. Kumar M, Shukla SK, Upadhyaya SN, Mishra PK. Analysis of thermal degradation of banana (Musa balbisiana) trunk biomass waste using iso-conversional models. Bioresour Technol. 2020;310:123393.

    Article  CAS  Google Scholar 

  51. Wang Z, Zhang J, Zhao B, Fu H, Pang J. Effect of pore characteristics on hydrogen reduction kinetics based on a novel analysis approach combined model-fitting and iso-conversion. Int J Hydrog Energy. 2021;46:23164–73.

    Article  CAS  Google Scholar 

  52. Arrhenius S. About the rate of reaction in the inversion of cane sugar by acids. Z Phys Chem. 1889;4:226–48.

    Article  Google Scholar 

  53. Arrhenius SA. About the dissociation of water dissolved substances. Z Physik Chem. 1887;1:631–48.

    Article  Google Scholar 

  54. Petrou A, Roulia M, Tampouris K. The use of the Arrhenius equation in the study of deterioration and of cooking of foods: some scientific and pedagogic aspects. Chem Educ Res Pract. 2002;3:87–97.

    Article  CAS  Google Scholar 

  55. Samsudin H, Auras R, Burgess G, Dolan K, Soto-Valdez H. Migration of antioxidants from polylactic acid films, a parameter estimation approach: reparameterization of the Arrhenius equation. Food Control. 2020;113:107208.

    Article  CAS  Google Scholar 

  56. Yan G, Crivoi A, Sun Y, Maharjan N, Song X, Li F, Tan M. An Arrhenius equation-based model to predict the residual stress relief of post weld heat treatment of Ti-6Al-4V plate. J Manufact Proc. 2018;32:763–72.

    Article  Google Scholar 

  57. Jung D, Kruse A. Evaluation of Arrhenius-type overall kinetic equations for hydrothermal carbonization. J Anal Appl Pyroly. 2017;127:286–91.

    Article  CAS  Google Scholar 

  58. Abdel-Hay M, Ragab MAA, Ahmed H, Mohyeldin SM. The use of Arrhenius kinetics to evaluate different hydrolytic stability of amiloride hydrochloride and cyclopenthiazide using chromatographic methods. Microchem J. 2019;147:682–90.

    Article  CAS  Google Scholar 

  59. Meijer E, Rep DBA, Leeuw DM, Matters M, Herwig P, Klapwijk T. The isokinetic temperature in disordered organic semiconductors. Synth Met. 2001;121:1351–2.

    Article  CAS  Google Scholar 

  60. Rooney JJ. Isokinetic temperature and the compensation effect in catalysis. J Mol Cataly A: Chem. 1998;133:303–5.

    Article  CAS  Google Scholar 

  61. Czochara R, Kusio J, Litwinienko G. Fullerene C60 conjugated with phenols as new hybrid antioxidants to improve the oxidative stability of polymers at elevated temperatures. RSC Adv. 2017;7:44021–5.

    Article  CAS  Google Scholar 

  62. Mianowski A, Radko T. Analysis of isokinetic effect by means of temperature criterion in coal pyrolysis. Pol J Appl Chem. 1994;38:395–405.

    Google Scholar 

  63. Lai VMF, Lii C, Huang WL, Lu TJ. Kinetic compensation effect in depolymerisation of food polysaccharides. Food Chem. 2000;68:319–25.

    Article  CAS  Google Scholar 

  64. Zhang Z, Duan H, Zhang Y, Guo X, Yu X, Zhang X, Rahman MM, Cai J. Investigation of kinetic compensation effect in lignocellulosic biomass torrefaction: Kinetic and thermodynamic analyses. Energy. 2020;207:118290.

    Article  CAS  Google Scholar 

  65. Drusedau T, Bindemann R. The Meyer- Neldel rule and the fundamental pre-exponential factor in the conductivity of a-Si:H. Phys Stat Sol B. 1986;136:61–4.

    Article  Google Scholar 

  66. Wang JC, Chen YF. The Meyer–Neldel rule in fullerenes. Appl Phys Lett. 1998;73:948–50.

    Article  CAS  Google Scholar 

  67. Pal RK, Agnihotri AK, Dwivedi PK, Kumar A. Further Meyer–Neldel rule in a-Se70Te30-xZnx thin films. J Ovon Res. 2009;5:135–44.

    CAS  Google Scholar 

  68. Anjali W, Patial BS, Thakur N. On the study of “further Meyer-Neldel Rule” in thermally activated high field conduction of Se-Te-Pb glassy alloys. J Elect Mater. 2022;51:1089–96.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Neeraj Mehta is thankful to his university for providing an incentive under IoE scheme (Dev. Scheme No. 6031) of UGC, New Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

SKP was involved in synthesis bulk samples; DSC measurements. NM helped in writing—original draft, writing—review & editing.

Corresponding author

Correspondence to Neeraj Mehta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S.K., Mehta, N. Some novel perspectives of iso-conversional analysis in the study of Meyer–Neldel energy for thermally governed crystallization by using Johnson–Mehl–Avrami (JMA) theory. J Therm Anal Calorim 148, 883–895 (2023). https://doi.org/10.1007/s10973-022-11836-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11836-0

Keywords

Navigation