Skip to main content
Log in

Review of Microstructure Evolution in Hypereutectic Al–Si Alloys and its Effect on Wear Properties

  • Review Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Al–Si alloys with silicon content more than 13 % are termed as hypereutectic alloys. In recent years, these alloys have drawn the attention of researchers due to their ability to replace cast iron parts in the transportation industry. The properties of the hypereutectic alloy are greatly dependent on the morphology, size and distribution of primary silicon crystals in the alloy. Mechanical properties of the hypereutectic Al–Si alloy can be improved by the simultaneous refinement and modification of the primary and eutectic silicon and by controlling the solidification parameters. In this paper, the effect of solidification rate and melt treatment on the evolution of microstructure in hypereutectic Al–Si alloys are reviewed. Different types of primary silicon morphology and the conditions for its nucleation and growth are explained. The paper discusses the effect of refinement/modification treatments on the microstructure and properties of the hypereutectic Al-Si alloy. The importance and effect of processing variables and phosphorus refinement on the silicon morphology and wear properties of the alloy is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM Handbook, Vol. 2, ASM International, Materials Park, OH (1990).

  2. Lasa L, and Rodriguez-Ibabe J M, Mater Sci Eng A 363 (2003) 193.

    Article  Google Scholar 

  3. Qian Z, Liu X, Zhao D, and Zhang G, Mater Lett 62 (2008) 2146.

    Article  Google Scholar 

  4. Archer R S, Kempf W L, US Patent 1799837 (1931).

  5. Rainer R S, US Patent 1940922 (1933).

  6. Donahue R, Fabiyi P A Society of Automotive Engineers http://www.ncccoat.com/PDF/MercuryNCCSAEtechnicalpapers.pdf (2000), Accessed 10 Sept 2012.

  7. Luo A A, Sachdev A K, and Powell B R, China Foundry 7 (2010) 463.

    CAS  Google Scholar 

  8. Zeren M, Mater Des 28 (2007) 2511.

    Article  CAS  Google Scholar 

  9. Haizhi Ye, J Mater Eng Perform 12 (2003) 287.

    Article  Google Scholar 

  10. Slattery B E, Perry T, and Edrisy A, Mater Sci Eng A 512 (2009) 76.

    Article  Google Scholar 

  11. Prasad B K, Venkateswarlu K, Modi O P, Jha A K, Das S, Dasgupta R, and Yegneswaran A H, Metall Mater Trans A, 29 (1998) 2747.

    Article  Google Scholar 

  12. Xu C L, Yang Y F, Wang H Y, and Jiang Q C, J Mater Sci 42 (2007) 6331.

    Article  CAS  Google Scholar 

  13. Lozano D E, Mercado-solis R D, Perez A J, Talamantes J, and Morales F, Wear 267 (2009) 545.

    Article  CAS  Google Scholar 

  14. Liu G, Li G, Anhui C, and Chen Z, Mater Des 32 (2011) 121.

    Article  Google Scholar 

  15. Xu C L, Wang H Y, Qiu F, Yang Y F, and Jiang Q C, Mater Sci Eng A 417 (2006) 275.

    Article  Google Scholar 

  16. Li P, Nikitin V I, Kandalova E G, and Nikitin K V, Mater Sci Eng A 332 (2002) 371.

    Article  Google Scholar 

  17. Kasprzak W, Sahoo M, Sokolowski J, Yamagata H, and Kurita H, Int J Metal Casting, 9 (2009) 55.

    Google Scholar 

  18. Liang D, Bayraktar Y, and Jones H, Acta Metall Mater 43 (1995) 579.

    Article  CAS  Google Scholar 

  19. Piątkowski J, Archiv Foundry Eng 9 (2009) 195.

    Google Scholar 

  20. Gupta M, Li Y, Wu Y, and Lavernia E J, J Therm Anal 44 (1995) 1321.

    Article  CAS  Google Scholar 

  21. Ho C R, and Cantor B, Acta Metall Mater 43 (1995) 3231.

    Article  CAS  Google Scholar 

  22. Matsuura K, Kudoh M, Kinoshita H, and Takahashi H, Mater Chem Phys 81 (2003) 393.

    Article  CAS  Google Scholar 

  23. Dasgupta R, J Mater Process Technol 72 (1997) 380.

    Article  Google Scholar 

  24. Gruzleski J E, and Closset B, The Treatment of Liquid AluminumSilicon Alloys, Des Plaines, IL: American Foundrymen’s Society, Inc. (1990).

  25. Hegde S, and Prabhu K N, J Mater Sci 43 (2008) 3009.

    Article  CAS  Google Scholar 

  26. Robles Hernandez F C, and Sokolowski J H, J Alloys Compd 419 (2006) 180.

    Article  CAS  Google Scholar 

  27. Yi H, and Zhang D, Mater Lett 57 (2003) 2523.

    Article  CAS  Google Scholar 

  28. Pei Y T, De Hosson J Th. M, Acta mater 49 (2001) 561.

    Article  CAS  Google Scholar 

  29. Pei Y T, De Hosson J Th. M, Acta mater 48 (2000) 2617.

    Article  CAS  Google Scholar 

  30. Kang H S, Yoon W Y, Kim K H, Kim M H, and Yoon Y P, Mater Sci Eng A 404 (2005) 117.

    Article  Google Scholar 

  31. Nikanorov S P, Volkov M P, Gurin V N, Burenkov Y A, Kardashev B K, Regel L L, and Wilcox W R, Mater Sci Eng A 390 (2005) 63.

    Article  Google Scholar 

  32. Korojy B, and Frediksson H, Trans Ind Inst Met 62 (2009) 361.

    Article  CAS  Google Scholar 

  33. Robles Hernandez F C, Sokolowski J H, J Alloys Compd 426 (2006) 205.

    Article  CAS  Google Scholar 

  34. Xu C L, and Jiang Q C, Mater Sci Eng A 437 (2006) 451.

    Article  Google Scholar 

  35. Wang R, Lu W, and Hogan L M, Metall Trans A 28 (1997) 1233.

    Article  Google Scholar 

  36. Yan-Feng H, Xiang-Fa L, Har-Mei W, Zhen-Qing W, Xiu-Fang B, and Jun-Yan Z, Trans Nonferrous Met Soc China 13 (2003) 92.

    Google Scholar 

  37. Xu C L, Wang H Y, Liu C, and Jiang Q C, J Crystal Growth 291 (2006) 540.

    Article  CAS  Google Scholar 

  38. Yilimaz F, Atasoy O A, and Elliot R, J Crystal Growth 118 (1992) 377.

    Article  Google Scholar 

  39. Yilimaz F, and Elliot R, J Mater Sci 24 (1989) 2065.

    Article  Google Scholar 

  40. Liu R P, Herlach D M, Vandyoussefi M, and Greer A L Metall Mater Trans A 35 (2004) 607.

    Article  Google Scholar 

  41. Liu R P, Herlach D M, Vandyoussefi M, and Greer A L Metall Mater Trans A 35 (2004) 1067.

    Google Scholar 

  42. Day M G, Nature 219 (1968) 1357.

    Article  CAS  Google Scholar 

  43. Kobayashi K, Shingu P H, and Ozaki R, J Mater Sci 10 (1975) 290.

    Article  CAS  Google Scholar 

  44. Ge LL, Liu R P, Li G, Ma M Z, and Wang W K, Mater Sci Eng A 385 (2004) 128.

    Google Scholar 

  45. Hongshanga D, and Xiangfa L, Rare Met 28 (2009) 651.

    Article  Google Scholar 

  46. Jones H, J Mater Sci 19 (1984) 1043.

    Article  CAS  Google Scholar 

  47. Radjai A, Miwa K, and Nishio T, Metall Mater Trans A 29 (1998) 1477.

    Article  Google Scholar 

  48. Zuo M, Zhao D, Teng X, Geng H, and Zhang Z, Mater Des 47 (2013) 857.

    Article  CAS  Google Scholar 

  49. Hou L G, Cui C, and Zhang J S, Mater Sci Eng A 527 (2010) 6400.

    Article  Google Scholar 

  50. Zuo M, and Xiangfa L, J Inorg Organomet Polym 22 (2012) 64.

    Article  CAS  Google Scholar 

  51. Clegg A J, and Das A A, Wear 43 (1977) 367.

    Article  CAS  Google Scholar 

  52. Kanno T, Xiao-lin T, and Fukuda Y, Trans Nonferrous Met Soc China 13 (2003) 1285.

    Google Scholar 

  53. Li X, Cai A, Liu G, Zhou Y and Zeng J, Adv Mater Res 146147 (2011) 454.

    Google Scholar 

  54. Li Q, Xia T, Lan Y, Zhao W, Fan L, and Li P, J. Alloys Comp doi:10.1016/j.jallcom.2013.02.016.

  55. Robles-Hernandez F C, Sokolowski J H, JOM 57 (2005) 48.

    Article  Google Scholar 

  56. Wu Y, Wang S, Li H, and Liu X, J Alloys Compd 477 (2009) 139.

    Article  CAS  Google Scholar 

  57. Nafis S, Hedjazi J, Boutorabi S M, and Ghomashchi R, Light Met (2004) 851.

  58. Dwivedi D, Sharma K A, and Rajan T V, Mater Manuf Process 20 (2005) 777.

    Article  CAS  Google Scholar 

  59. Kezhuna H, Fuxiaob Y, Dazhib Z, and Lianga Z, Trans Ind Inst Met 62 (2009) 367.

    Article  Google Scholar 

  60. Ying Z, Dan-Qing Y, Wang-Xing L, Zhi-Sen R, Qun Z, and Jun-Hong Z, Trans Nonferrous Met Soc China 17 (2007) 413.

    Google Scholar 

  61. Min Z, Xiangfa L, Hongshang D, and Xiangjun L, Rare Met 28 (2009) 412.

    Article  Google Scholar 

  62. Wesis J C, Loper C R Jr, AFS Trans 32 (1987) 37.

    Google Scholar 

  63. Ramussen R T C, US Patent 3953202 (1976).

  64. Zhang H, Duan H, Shao G, and Xu L, Rare Met 27 (2008) 59.

    Article  Google Scholar 

  65. Zuo M, Liu X, and Sun Q, J Mater Sci 44 (2009) 1952.

    Article  CAS  Google Scholar 

  66. Lescuyer H, Allibert M, and Laslaz G, J Alloys Compd 279 (1998) 237.

    Article  CAS  Google Scholar 

  67. Zhang Q, Liu X, and Dai H, J Alloys Compd 480 (2009) 376.

    Article  CAS  Google Scholar 

  68. Zuo M, Liu X F, Sun Q Q, and Jiang K, J Mater Process Technol 209 (2009) 5504.

    Article  CAS  Google Scholar 

  69. Kasprzak W, Sediako D, Sahoo M, Walker M, Swainson I, Supplemental Proceedings, Materials Processing and Properties 1 (2010) 93.

  70. Zhi-ying O, Xie-min M, and Mei H, J Shanghai University (English Edition) 11 (2007) 400.

    Article  Google Scholar 

  71. Mascre C, British Foundry man (1953) 227.

  72. Clegg A J, and Das A A, British Foundry man 70 (1977) 56.

    Google Scholar 

  73. Tenekedijiv N, and Gruzleski J E, Cast Met 3 (1990) 96.

    Google Scholar 

  74. Lashgari H R, Emamy M, Razaghian A, and Najimi A A, Mater Sci Eng A 517 (2009) 170.

    Article  Google Scholar 

  75. Nogita K, McDonald S D, and Dahle A K, Philos Mag 84 (2004) 1683.

    Article  CAS  Google Scholar 

  76. Chang J Y, Kim G H, Moon I G, and Choi C S, Scripta Mater 39 (1998) 307.

    Article  CAS  Google Scholar 

  77. Weixi S, Bo G, Ganfeng T, Shiwei L, Yi H, and Fuxiao Y, J Rare Earths 28 (2010) 367.

    Article  Google Scholar 

  78. Faraji M, Todd I, and Jones H, J Mater Sci 40 (2005) 6363.

    Article  CAS  Google Scholar 

  79. Fuxiao Y, Jianhua P, Kezhun H, Dazhia Z, and Liang Z, Trans Ind Inst Met 62 (2009) 347.

    Article  Google Scholar 

  80. Yamagata H, Kasprzak W, Aniolek M, Kurita H, and Sokolowski J H, Mater Process Technol 203 (2008) 333.

    Article  CAS  Google Scholar 

  81. Sulzer J, Mod Castings 39 (1960) 38.

    Google Scholar 

  82. Mandal B, Saha A, and Chakraborty M, AFS Trans 99 (1991) 643.

    CAS  Google Scholar 

  83. Kaneko J, Sugamata M, and Aoki K I, J Jpn Inst Met 42 (1978) 972.

    Google Scholar 

  84. Kyffin W J, Rainforth W M, and Jones H, J Mater Sci 36 (2001) 2667.

    Article  CAS  Google Scholar 

  85. Li Y, Zhang D, Xia W, Long Y, and Zhang W, J Mater Sci Lett 21 (2002) 537.

    Article  CAS  Google Scholar 

  86. Radjai A, Miwa K, and Nishio T, Metall Mater Trans A 29A (1998) 1477.

    Article  CAS  Google Scholar 

  87. Kaur P, Dwivedi D K, and Pathak P M, Int J Adv Manuf Technol 63 (2012) 415.

    Article  Google Scholar 

  88. Abramov V O, Abramov O V, Straumal B B, and Gust W, Mater Des 18 (1997)323.

    Article  CAS  Google Scholar 

  89. Sarkar A D, Wear 31 (1975) 331.

    Article  CAS  Google Scholar 

  90. Kadhim M J, and Dwarakadasa E S, Wear 82 (1982) 377.

    Article  Google Scholar 

  91. Krishna Kanth V, Pramila Bai B N, and Biswas S K, Scripta Metall 24 (1990) 267.

    Article  Google Scholar 

  92. Clarke J, and Sarkar A D, Wear 54 (1979) 7.

    Article  CAS  Google Scholar 

  93. Torabian H, Patak J P, and Tiwari S N, J Mater Sci Lett 14 (1995) 1631.

    Article  CAS  Google Scholar 

  94. Lee J, Kang S, and Yoon S, Met Mater 5 (1999) 357.

    Google Scholar 

  95. Wang F, Ma Y, Zhang Z, Cui X, and Jin Y, Wear 256 (2004) 342.

    Article  CAS  Google Scholar 

  96. Elmadagli M, and Alpas A T, Wear 261 (2006) 367.

    Article  CAS  Google Scholar 

  97. Prasad B K, Venkateswarlu K, Modi O P, and Yegneswaran A H, J Mater Sci Lett 15 (1996) 1773.

    Article  CAS  Google Scholar 

  98. Elmadagli M, Perry T, and Alpas A T, Wear 262 (2007) 79.

    Article  CAS  Google Scholar 

  99. Hekmat-Ardakan A, Liu X, Ajersch F, and Grant Chen X, Wear 269 (2010) 684.

    Article  CAS  Google Scholar 

  100. Shah K B, Kumar S, and Dwivedi D K, Mater Des 28 (2007) 1968.

    Article  CAS  Google Scholar 

  101. Alloy phase diagrams, ASM Handbook, Vol. 3, ASM International, Materials Park, OH (1992).

Download references

Acknowledgments

One of the authors (VV) thanks National Institute of Technology Karnataka for the Research Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Narayan Prabhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

V, V., Narayan Prabhu, K. Review of Microstructure Evolution in Hypereutectic Al–Si Alloys and its Effect on Wear Properties. Trans Indian Inst Met 67, 1–18 (2014). https://doi.org/10.1007/s12666-013-0327-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-013-0327-x

Keywords

Navigation