Skip to main content
Log in

Effect of Applied Potential to Control Bacterial Adhesion on Titanium a Condenser Material of Nuclear Power Plants

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The effect of applied potential to control bacterial adhesion on titanium is studied. Open circuit potential (OCP) and adhesion density were monitored for 24 h for titanium exposed to bacterial species in seawater environment to standardize the parameters like applied potential and time of exposure. Followed by this, anodic and cathodic potentiodynamic polarization studies were carried out with specimens exposed to Bacillus sp., to monitor adhesion and biofilm formation. Epifluorescence observation clearly showed reduced attachment of Bacillus sp. on polarized surfaces. The effect of applied potential on the formation of biofilms was studied with Pseudomonas sp., Flavobacterium sp., Bacillus sp. and Micrococcus sp. on titanium specimens potentiostatically polarized anodically (+600 mV) above the OCP and cathodically (−600 mV) below OCP. The results of the present study showed the removal of attached cells at both anodic and cathodic potentials. Effect of applied potential on both biofilm formation and conditions for biofilm development are discussed in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. George R P, Gopal J, Muraleedharan P, Anandkumar B, Baskaran R, Maruthamuthu S, and Dayal R K, Biofilms (2008) doi:10.1017/S1479050508002226 .

  2. Chow W, and Musali Y, Condenser biofouling control, Symposium: the State of the Art, Rapport EPRI June 18–20, 1985, Lake Buena Vista, FL (1985).

  3. Eimer K, Recommendations for the optimum cleaning frequency of the Taprogge tube cleaning system, Technical Report, Taprogge Gesellschaft mbH: Wetter (1985) p 85.

  4. Jones D, Principles and Prevention of Corrosion, MacMillan Publishing Co., New York (1992).

    Google Scholar 

  5. Dexter S C, and Lin S-H, Int Biodeterior Biodegrad 29 (1992) 231.

    Article  CAS  Google Scholar 

  6. Edyvean R G J, Maines A D, Hutchinson C J, Silk N J, and Evans L V, Int Biodeterior Biodegrad 29 (1992) 251.

    Article  CAS  Google Scholar 

  7. Kajiyama F, and Okamura K, Corrosion 55 (1999) 74.

    Article  CAS  Google Scholar 

  8. Kerr A, Hodgkiess T, Cowling M J, Beveridge C M, Smith M J, and Parr C S, J Appl Microbiol 85 (1998) 1067.

    Article  Google Scholar 

  9. Gordon A S, Gerchakov S M, and Udey L R, Canadian J Microbiol 27 (1981) 698.

    Article  CAS  Google Scholar 

  10. Roy A K, Spragge M K, Fleming D L, and Lum B Y, Micron 32 (2001) 211.

    Article  CAS  Google Scholar 

  11. Busalmen J P, and De Sanchez S R Appl Environ Microbiol 67 (2001) 3188.

    Article  CAS  Google Scholar 

  12. Shibata Y, Suzuki D, Omori S, Tanaka R, Murakami A, Kataoka Y, Baba K, Kamijo R, and Miyazaki T, Biomaterials 31(2010) 8546.

    Article  CAS  Google Scholar 

  13. Muller-Steinhagen H, Heat exchanger fouling: mitigation and cleaning technologies, Publico Publishers, Essen, Germany (2000) p 2.

    Google Scholar 

  14. Jenner H A, Taylor C J L, van Donk M, and Khalanski M, Marine Environ Res 43 (1997) 1.

    Article  Google Scholar 

  15. Matsunaga T, Namba Y, and Nakajima T, Bioelectrochem Bioenerg 13 (1984) 393.

    Article  Google Scholar 

  16. Matsunaga T, Namba Y, and Nakajima T, Appl Environ Microbiol 58 (1985) 686.

    Google Scholar 

  17. Matsunaga T, Nakasono S, and Masuda S, FEMS Microbiol Lett 93 (1992a) 255.

    Article  CAS  Google Scholar 

  18. Nakasono S, Nakamura N, Sode K, and Matsunaga T, Bioelectrochem Bioenerg 27 (1992) 191.

    Article  Google Scholar 

  19. Matsunaga T, and Namba Y, Anal Chem 56 (1984) 798.

    Article  CAS  Google Scholar 

  20. Matsunaga T, Nakasono S, Takamuku T, Burgess J G, Nakamura N, and Sode K, Appl Environ Microbiol 58 (1992b) 686.

    CAS  Google Scholar 

  21. Okochi M, and Matsunaga T, Electrochem Acta 42 (1997) 3247.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors sincerely acknowledge Dr. S.C. Chetal, Director, Indira Gandhi Centre for Atomic Research and Dr. T. Jayakumar, Director, MMG, for their keen interest in the study and constant encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. George.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nithila, S.D.R., George, R.P., Anandkumar, B. et al. Effect of Applied Potential to Control Bacterial Adhesion on Titanium a Condenser Material of Nuclear Power Plants. Trans Indian Inst Met 65, 251–258 (2012). https://doi.org/10.1007/s12666-012-0126-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-012-0126-9

Keywords

Navigation