Skip to main content
Log in

Studies on Photocatalytic Performance of MgO Nanoparticles Prepared by Wet Chemical Method

  • Original Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the present article, we explore a cost-effective and an environmentally benign route to prepare magnesium oxide (MgO) nanoparticles through thermal decomposition of magnesium hydroxide (Mg(OH)2) nanoparticles. Mg(OH)2 nanoparticles were prepared using different solvents namely ethylenediamine (EDA) and triethanolamine (TEA) by wet chemical method, and subsequently the as-synthesized Mg(OH)2 nanoparticles were calcinated at 400°C for 2 h in air to obtain MgO nanoparticles. XRD pattern revealed that as-synthesized Mg(OH)2 nanoparticles are polycrystalline in nature with hexagonal structure, and after annealing it transforms to MgO nanoparticles with cubic structure. FTIR spectrum of as-synthesized Mg(OH)2 nanoparticles indicated the OH antisymmetric stretching vibration of the Mg(OH)2 and after annealing the sharp peak at 3686 cm−1 disappears, which confirms the complete transformation of hexagonal Mg(OH)2 to cubic MgO. SEM analysis showed the formation of interfused Mg(OH)2 nanoflakes and coral-like hierarchical MgO nanostructure made up of stacked nanoflakes. Optical band gap energy of Mg(OH)2 and MgO nanoparticles prepared using different solvent were estimated using UV–Vis DRS. Degradation of methyl orange was performed to investigate the photocatalytic activity of coral-like hierarchical MgO nanostructure. Results demonstrate that coral-like hierarchical MgO nanostructure possessing large surface area and porous morphology exhibited good photocatalytic degradation of methyl orange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Reddy N K, Ahsanulhaq Q, Kim J H, and Hahn Y B, Appl Phys Lett 92 (2008) 043127.

    Article  Google Scholar 

  2. Ahsanulhaq Q, Umar A, and Hahn Y B, Nanotechnology 18 (2007) 115603.

    Article  Google Scholar 

  3. Ahsanulhaq Q, Kim S H, Kim J H, and Hahn Y B, Mater Res Bull 43 (2008) 3483.

    Article  CAS  Google Scholar 

  4. Li W C, Lu A H, Weidenthaler C, and Schuth F, Chem Mater 16 (2004) 5676.

    Article  CAS  Google Scholar 

  5. Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, and Gedanken A, Adv Funct Mater 18 (2005) 1708.

    Article  Google Scholar 

  6. Choudary B M, Mulukutla R S, and Klabunde K J, J Am Chem Soc 125 (2003) 2020.

    Article  CAS  Google Scholar 

  7. Rajagopalan S, Koper O, Decker S, and Klabunde K J, Chem Eur J 8 (2002) 2602.

    Article  CAS  Google Scholar 

  8. Jiu J, Kurumada K, Tanigaki M, Adachi M, and Yoshikawa S, Mater Lett 58 (2003) 44.

    Article  Google Scholar 

  9. Ding Y, Zhang G, Wu H, Hai B, Wang L, and Qian Y, Chem Mater 13 (2001) 435.

    Article  CAS  Google Scholar 

  10. Laine R M, Bickmore C R, Treadwell D R, Waldner K F, U S Patent US 5958361 28 September 1999.

  11. El-Shall M, Slack W, Vann W, Kane D, and Hanley D, J Phys Chem 98 (1998) 3067.

    Article  Google Scholar 

  12. Matthews J S, Just O, Obi-Johnson B, and Rees W S, Jr. Chem Vap Deposition 6 (2000) 129.

    Article  CAS  Google Scholar 

  13. Helble J J, J Aerosol Sci 29 (1998) 721.

    Article  CAS  Google Scholar 

  14. Bhargava A, Alarco J, Mackinnon I, Page D, and Ilyushechkin A, Mater Lett 34 (1998) 133.

    Article  CAS  Google Scholar 

  15. Yang H, Zhang K, Shi R, Li X, Dong X, and Yu Y, J Alloys Compd 413 (2006) 302.

    Article  CAS  Google Scholar 

  16. Ubale A U, Daryapurkar A S, Mankar R B, Raut R R, Sangawar V S, and Bhosale C H, Mater Chem Phys 110 (2008) 180.

    Article  CAS  Google Scholar 

  17. Wu J, Yan H, Zhang X, Wei L, Liu X, and Xu B, J Colloid Interface Sci 324 (2008) 167.

    Article  CAS  Google Scholar 

  18. Rezaei M, Khajenoori M, and Nematollahi B, Powder Technol 205 (2011) 112.

    Article  CAS  Google Scholar 

  19. Jiang W, Hua X, Han Q, Yang X, Lu L, and Wang X, Powder Technol 191 (2009) 227.

    Article  CAS  Google Scholar 

  20. Ren L, Zheng Y P, and Jiang D, Solid State Sci 12 (2010) 138.

    Article  CAS  Google Scholar 

  21. Zhang G Q, Chang N, Han D Q, Zhou A Q, and Xu X H, Mater Lett 64 (2010) 2135.

    Article  CAS  Google Scholar 

  22. Kumari L, Li W Z, Vannoy C H, Leblanc R M, and Wang D Z, Ceram Int 35 (2009) 3355.

    Article  CAS  Google Scholar 

  23. Kaneva N V, Dimitrov D T, and Dushkin C D, Appl Surf Sci 257 (2011) 8113.

    Article  CAS  Google Scholar 

  24. Zhang Y, Zhu F, Zhang J, and Xia L, Nanoscale Res Lett 3 (2008) 201.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sathyamoorthy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mageshwari, K., Sathyamoorthy, R. Studies on Photocatalytic Performance of MgO Nanoparticles Prepared by Wet Chemical Method. Trans Indian Inst Met 65, 49–55 (2012). https://doi.org/10.1007/s12666-011-0106-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-011-0106-5

Keywords

Navigation