Skip to main content

Advertisement

Log in

Investigations of hydrogen storage in palladium decorated graphene nanoplatelets

  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Carbon based nanomaterials are ideal media for hydrogen storage due to their highly porous structure, low density, and large surface area. The hydrogen uptake capacity of different carbon nanomaterials can be enhanced by spill over mechanism from a supported transition metal catalyst. In the present work graphene nanoplatelets (GNP) were prepared by thermal exfoliation method and decorated with palladium nanoparticles (Pd/GNP) by ethylene glycol reduction method. The high pressure hydrogen adsorption/desorption measurements were carried out for GNP and Pd/GNP using Sieverts apparatus in the temperature and pressure ranges of 25–100°C and 0.1–4 MPa, respectively. The hydrogen storage capacity of GNP and Pd/GNP were found to be 0.28 wt% and 1.21 wt% respectively at 25°C and 3.2 MPa pressure. Uniform dispersion of palladium nanoparticles over the surface of GNP enhances the hydrogen storage capacity of GNP by 70% due to spill over mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schlapbach L and Züttel A, Nature, 414 (2001) 353.

    Article  CAS  Google Scholar 

  2. Dillon A C, Johns K M, Bekkedahl T A, Klang C H, Bethune D S and Heben M J, Nature. 386 (1997) 377.

    Article  CAS  Google Scholar 

  3. Chambers A, Park C, Baker R T K and Rodriguez N M, J. Phys.Chem. B, 102 (1998) 4253.

    Article  CAS  Google Scholar 

  4. Yang R T, Dillon A C and Heben M J, Appl. Phys. A: Mater. Sci. Process, 72 (2001) 133.

    Article  Google Scholar 

  5. Benard P and Chahine R, Scr. Mater. 56 (2007) 803.

    Article  CAS  Google Scholar 

  6. Yang Z, Xia Y and Mokaya R, J. Am. Chem. Soc, 129 (2007) 1673.

    Article  CAS  Google Scholar 

  7. Sami U R, Renju Z, Sang W H, Mehraj N and Kee S N, Chemical Physics Letters, 441 (2007) 261.

    Article  Google Scholar 

  8. De la Casa-Lillo M A, Lamari-Darkrim F, Cazorla-Amoro’s D and Linares-Solano A, J. Phys. Chem. B, 106 (2002) 10930

    Article  Google Scholar 

  9. Chambers A, Park C, Baker R T K and Rodriguez N M, J. Phys Chem B, 102 (1998) 4253.

    Article  CAS  Google Scholar 

  10. Ahn C C, Ye Y, Ratnakumar B V, Witham C, Bowman R C and Fultz B, Appl Phys Lett, 73 (1998) 3378.

    Article  CAS  Google Scholar 

  11. Park C, Anderson P E, Chambers A, Tan C D, Hidalgo R and Rodriguez N M, J Phys Chem B, 103 (1999) 10572

    Article  CAS  Google Scholar 

  12. Xu W C, Takahashi K, Matsuo Y, Hattori Y, Kumagai M and Ishiyama S, Int J Hydrogen Energy, 32 (2007) 2504.

    Article  CAS  Google Scholar 

  13. Lueking A and Yang R T, J. Catal. 206 (2002) 165.

    Article  CAS  Google Scholar 

  14. Li Y W and Yang R T, J. Phys. Chem. B, 110 (2006) 17175.

    Article  CAS  Google Scholar 

  15. Wang L and Yang R T, J. Catal. 260 (2008) 198.

    Article  CAS  Google Scholar 

  16. Sinfelt J H and Lucchesi P J, J. Am. Chem. Soc. 85 (1963) 3365.

    Article  CAS  Google Scholar 

  17. Mitchell P C H, Ramirez-Cuesta A J, Parker S F, Tomkinson J and Hompset D, J. Phys. Chem. B, 107 (2003) 6838.

    Article  CAS  Google Scholar 

  18. Imran Jafri R, Rajalakshmi N, and Ramaprabhu S, J. Mater. Chem. 20 (2010) 7114–7117.

    Article  CAS  Google Scholar 

  19. Yoo E, Gao L, Komatsu T, Yagai N, Arai K, Yamazaki T, Matsuishi K, Matsumoto T and Nakamura J, J. Phys. Chem. B, 108 (2004) 18903.

    Article  CAS  Google Scholar 

  20. Zacharia R, Kim K Y, Fazle Kibria A K M and Nahm K S, Chem. Phys. Lett., 412 (2005) 369.

    Article  CAS  Google Scholar 

  21. Takagi H, Hatori H, Yamada Y, Matsuo S and Shiraishi M, J. Alloys Compd. 385 (2004) 257.

    Article  CAS  Google Scholar 

  22. Soldano C, Mahmood A and Dujardin E, Carbon, 48 (2010) 2127.

    Article  CAS  Google Scholar 

  23. Patil A J, Vickery J L, Scott T B and Mann S, Adv. Matter. 21 (2009) 3159.

    Article  CAS  Google Scholar 

  24. Baby T T, Aravind J S S, Arockiadoss T, Rakhi R B and Ramaprabhu S, Sens. Actuators. B, 145 (2010) 71.

    Article  Google Scholar 

  25. Niyogi S, Bekyarova E, Itkis M E, McWilliams J L, Hamon M A and Haddon R C, J Am Chem Soc, 128 (2006) 7720.

    Article  CAS  Google Scholar 

  26. Stankovich S, Piner R D, Chen X, Wu N, Nguyen S T and Ruoff Stable R S. J Mater Chem. 16 (2006) 155.

    Article  CAS  Google Scholar 

  27. Wang Z, Tomovic Z, Kastler M, Pretsch R, Negri F and Enkelmann V, J Am Chem Soc, 126 (2004) 7794.

    Article  CAS  Google Scholar 

  28. Bourlinos A B, Gournis D, Petridis D, Szabo T, Szeri A and Dekany I, Langmuir, 19 (2003) 6050.

    Article  CAS  Google Scholar 

  29. Hahn J R, Kang H, Lee S M and Lee Y H, J Phys Chem B, 103 (1999) 9944.

    Article  CAS  Google Scholar 

  30. Grant L M, Tiberg F and Ducker W A, J Phys Chem B, 102 (1998) 4288.

    Article  CAS  Google Scholar 

  31. Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J and Stach E A, Nature, 442 (2006) 282.

    Article  CAS  Google Scholar 

  32. Kaniyoor A, Jafri R I, Arockiadoss T and Ramaprabhu S, Nanoscale Res. Lett., 1 (2009) 382.

    CAS  Google Scholar 

  33. Shaijumon M M, Rajalakshmi N, Hojin R and Ramaprabhu S, Nanotechnology, 16 (2005) 518

    Article  CAS  Google Scholar 

  34. Shaijumon M M, Bejoyb N and Ramaprabhu S, Applied Surface Science, 242 (2005) 192

    Article  CAS  Google Scholar 

  35. Qian W, Liu T, Wei F, Wang Z, Luo G and Yu H, Carbon, 41 (2003) 2613

    Article  CAS  Google Scholar 

  36. Kovtyukhova N I, Malouk T E, Pan L and Dickey E C, J. Am. Chem. Soc., 125 (2003) 9761.

    Article  CAS  Google Scholar 

  37. Colthup N B, Daly L H and Wiberlay S E, Introduction to infrared and Raman spectroscopy, Boston, Acadamic Press (1990).

    Google Scholar 

  38. Kim U J, Furtado C A, Liu X, Chen G, Eklund P C and Am J, J. Am. Chem. Soc., 127 (2005) 15437.

    Article  CAS  Google Scholar 

  39. Reich S, Thomsen C and Philos, Trans. R. Soc. London, 362 (2004) 2271.

    Article  CAS  Google Scholar 

  40. Conway B E and Bockris J O M, J. Chem. Phys. 26 (1957) 532.

    Article  CAS  Google Scholar 

  41. Conway B E and Jerkiewicz G, Electrochim. Acta 45 (2000), 4075

    Article  CAS  Google Scholar 

  42. Brian D A, Cassandra K O, Shuai C and Aicheng C, J. Phys. Chem. C, 114 (2010) 19875

    Article  Google Scholar 

  43. Jewell L L and Davis B H, Appl. Catal. A, 310 (2006) 1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ramaprabhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinayan, B.P., Sethupathi, K. & Ramaprabhu, S. Investigations of hydrogen storage in palladium decorated graphene nanoplatelets. Trans Indian Inst Met 64, 169 (2011). https://doi.org/10.1007/s12666-011-0033-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-011-0033-5

Keywords

Navigation