Skip to main content
Log in

High yield formation of carbon nanotubes using arc discharge assisted with a nitrogen jet

  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Carbon Nanotubes (CNTs) are of significant research interest due to their significant electrical, mechanical, electro-mechanical and thermal properties. This enables CNT to be used in advanced bio-medical, electronics and materials technological applications. CNTs can be synthesized by various methods such as Arc-discharge, Chemical Vapor Deposition (CVD), Laser ablation etc. Still challenge exists when it comes to the yield. In general CNTs are commercially synthesized by Arc-discharge and CVD techniques. In both the cases the defect intensity differs according to the atmosphere which prevails in the production chamber. In the case of CVD the defect intensity is mainly due to pentagons of carbon, which cause curved faces whereas in the case of arc discharge, broken bonds can result at the surfaces.

In general, the production of CNTs requires the presence of a controlled atmosphere inside the reaction chamber. Recent research has shown that CNTs can also be produced in open atmosphere but with a significant reduction in the yield. In the present work, a jet of nitrogen gas is applied between the arcing interfaces. As a consequence there is a significant change in the yield and defect density. Characterization techniques such as XRD, FEG-SEM, TEM and Raman spectroscopy confirm the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima S, Nature, 354 (1991) 56.

    Article  CAS  Google Scholar 

  2. Noriaki Hamada and Shin-ichi Sawada Atsushi Oshiyama, Phys. Rev. Lett., 68 (1992) 1579.

    Article  CAS  Google Scholar 

  3. Seunghun Hong and Sung Myung, Nature Nanotech., 2 (2007) 207.

    Article  CAS  Google Scholar 

  4. Treacy M M J, Ebbesen T W and Gibson J M, Nature 381 (1996) 678.

    Article  CAS  Google Scholar 

  5. Journet C, Maser W K, Bernier P, Loiseau A, Lamydela Chapelle M, Lefrant S, Deniard P, Leek R and Fischer J E, Nature, 388 (1997) 756.

    Article  CAS  Google Scholar 

  6. K. Shimotani, K. Anazawa, H. Watanabe, M. Shimizu, Appl. Phys. A 73 (2001) 451.

    Article  CAS  Google Scholar 

  7. Cui S, Scharff P, Siegmund C, Spiess L, Romanus H, Schawohl J, Risch K, Schneider D and Klotzer S, Carbon, 411 (2002) 1645.

    Google Scholar 

  8. Ravi Joshi, Jörg Engstler, Kesavan Nair P, Prathap Haridoss and Jörg J. Schneider, Diamond & Related Materials, 17 (2008) 913.

    Article  CAS  Google Scholar 

  9. Ajayan P M, Ebbesen T W, Ichihashi T, Iijima S, Tanigaki K, and Hiura H, Nature 362 (1993) 522.

    Article  CAS  Google Scholar 

  10. Paladugu M, Maneesh K, Nair P K and Haridoss P, J. Nanosci. Nanotechnol., 5 (2005) 747.

    Article  CAS  Google Scholar 

  11. Eugene G. Gamaly and Thomas W. Ebbesen, Mechanism of carbon nanotubes formation in the arc discharge, Phys. Rev. B 52 (1995) 2083.

    Article  CAS  Google Scholar 

  12. Lambin P, Loiseau A, Culot C and Biro L, Carbon 40 (2002) 1635.

    Article  CAS  Google Scholar 

  13. Hiura H, Ebbesen T, Tanigaki K and Takahashi H, Chem. Phys. Lett., 202 (1993) 509.

    Article  CAS  Google Scholar 

  14. John D. Saxby, Peter ChatfieldS, Andrew J. Palmisano, Anthony M. Vassallo, Michael A. Wilson and Louis S.K. Pang, Thermogravimetric Analysis of Buckminsterfullerene and Related Materials in Air. J. Phys. Chem. 96 (1992) 17.

    Article  CAS  Google Scholar 

  15. Louis S.K. Pang, John D. Saxby and Peter Chatfield S, Thermogravimetric Analysis of Carbon Nanotubes and Nanoparticles, J. Phys. Chem. 97 (1993) 6941.

    Article  CAS  Google Scholar 

  16. Ajayan P M, Ebbesen T W, Ichihashi T, Iijima S, Tanigaki K and Hiura H, Opening of carbon nanotubes by oxygen and implication for filling, Nature 362 (1993) 522.

    Article  CAS  Google Scholar 

  17. Large scale synthesis of single-wall carbon nanotubes by arcdischarge method, Journal of Physics and Chemistry of Solids, 61 (2000) 1031.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prathap Haridoss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berkmans, A.J., Haridoss, P. High yield formation of carbon nanotubes using arc discharge assisted with a nitrogen jet. Trans Indian Inst Met 64, 137 (2011). https://doi.org/10.1007/s12666-011-0027-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-011-0027-3

Keywords

Navigation