Skip to main content
Log in

Carbon nanotubes/nanofibers (CNTs/CNFs): a review on state of the art synthesis methods

  • Review Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This research article discusses the state of the art synthesis methods for the formation of carbon nanotubes and nanofibers (CNTs/CNFs). Carbon nanotubes have a number of applications in the areas of biomedicine, electronics and chemical sensors etc. Overview of certain specific methods for the formation of carbon nanotubes have been reviewed in this research article. We discussed several available synthesis methods including: arc discharge, laser ablation, microwave, chemical vapor deposition and plasma enhanced chemical vapor deposition method for the formation of carbon nanotubes. Our experimental work on the synthesis of vertically aligned carbon nanotubes by using inductively coupled plasma enhanced chemical vapor deposition (IC-PECVD) is described in details. The results obtained by using the IC-PECVD process are observed and interpreted by SEM and Raman spectroscopic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  • Ai-fei Z et al (2006) Preparation of isolated single-walled carbon nanotubes with high hydrogen storage capacity, vol 6

  • Barnard AW, Zhang M, Wiederhecker GS, Lipson M, McEuen PL (2019) Real-time vibrations of a carbon nanotube. Nature 566:89–93

    Article  Google Scholar 

  • Beumer K (2016) Broadening nanotechnology’s impact on development. Nat Nanotechnol 11:398–400

    Article  Google Scholar 

  • Bishop MD, Hills G, Srimani T, Lau C, Murphy D, Fuller S, Humes J, Ratkovich A, Nelson M, Shulaker MM (2020) Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities. Nat Electron 3:492–501

    Article  Google Scholar 

  • Caughman J et al (2003) Growth of vertically aligned carbon nanofibers by low-pressure inductively coupled plasma-enhanced chemical vapor deposition. Appl Phys Lett 83:1207

    Article  Google Scholar 

  • Cheung C et al (2002) Diameter-controlled synthesis of carbon nanotubes. J Phys Chem B 106:2429–2433

    Article  Google Scholar 

  • Delzeit L et al (2002) Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor. J Appl Phys 91:6027

    Article  Google Scholar 

  • Durrani YA, Riesgo T, Khan MI, Mahmood T (2016) Power analysis approach and its application to IP-based SoC Design. COMPEL Int J Comput Math Electr Electron Eng 35(3)

  • Endo M et al (2004) Applications of carbon nanotubes in the twenty-first century. Philos Trans A 362:2223

    Article  Google Scholar 

  • Fadeel B, Kostarelos K (2020) Grouping all carbon nanotubes into a single substance category is scientifically unjustified. Nat Nanotechnol 15:164

    Article  Google Scholar 

  • Gohier A et al (2006) Limits of the PECVD process for single wall carbon nanotubes growth. Chem Phys Lett 421:242–245

    Article  Google Scholar 

  • Gong Q et al (2004) Fabrication and structure: a study of aligned carbon nanotube/carbon nanocomposites. Solid State Commun 131:399–404

    Article  Google Scholar 

  • Grzybowski BA, Huck WTS (2016) The nanotechnology of life-inspired systems. Nat Nanotechnol 11:585–592

    Article  Google Scholar 

  • Huh Y et al (2003) Controlled growth of carbon nanotubes over cobalt nanoparticles by thermal chemical vapor deposition. J Mater Chem 13:2297–2300

    Article  Google Scholar 

  • Jacques D et al (2000) Synthesis of multiwalled carbon nanotubes, pp 15–20

  • Khairurrijal K et al (2009) Structural characteristics of carbon nanotubes fabricated using simple spray pyrolysis method. Indones J Phys 19:91

    Article  Google Scholar 

  • Khan MI, Lin F (2014) Comparative analysis and design of harmonic aware low power latches and flip-flops. In: IEEE 10th international conference on electron devices and solid-state circuits (EDSSC), Chengdu

  • Khan MI, Buzdar AR, Lin F (2014) Ballistic transport modeling in advanced transistors. In: 12th IEEE international conference on solid-state and integrated circuit technology (ICSICT), Guilin

  • Khan MI, Shoukat R, Mukherjee K, Dong H (2017a) A review on pH sensitive materials for sensors and detection methods. Microsyst Technol 23(10):4391–4404

    Article  Google Scholar 

  • Khan MI, Qamar A, Shabbir F, Shoukat R (2017b) Design, development and implementation of low power and high speed A/D converter in submicron CMOS technology. Microsyst Technol 23(12):6005–6014

    Article  Google Scholar 

  • Khan MI, Shoukat R, Mukherjee K, Dong H (2018a) Analysis of harmonic contents of switching waveforms emitted by the ultra-high speed digital CMOS integrated circuits for use in future micro/nano systems applications. Microsyst Technol 24(2):1201–1206

    Article  Google Scholar 

  • Khan MI, Dong H, Shabbir F, Shoukat R (2018b) Embedded passive components in advanced 3D chips and micro/nano electronic systems. J Microsyst Technol 24(2):869–877

    Article  Google Scholar 

  • Khan MI, Alshammari AS, Alshammari BM, Alzamil AA (2021) Estimation and analysis of higher-order harmonics in advanced integrated circuits to implement noise-free future-generation micro- and nanoelectromechanical systems. Micromachines 12(5):541. https://doi.org/10.3390/mi12050541

    Article  Google Scholar 

  • Kobayashi Y et al (2004) CVD growth of single-walled carbon nanotubes using sizecontrolled nanoparticle catalyst. Thin Solid Films 464:286–289

    Article  Google Scholar 

  • Kumar M, Ando Y (2008) Gigas growth of carbon nanotubes. Defence Sci J 58:496–503

    Article  Google Scholar 

  • Kuzmany H, Kukovecz A, Simon F, Holzweber M, Kramberger Ch, Pichler T (2004) Functionalization of carbon nanotubes. Synth Metals 141:113–122

    Article  Google Scholar 

  • Lin CC, Leu IC, Yen JH, Hon MH (2004) Sheath-dependent orientation control of carbon nanofibres and carbon nanotubes during plasma-enhanced chemical vapour deposition. Nanotechnology 15:176

    Article  Google Scholar 

  • Lin YY, Wei HW, Leou KC, Lin H, Tung CH, Wei MT, Lin C, Tsai CH (2006) Experimental characterization of an inductively coupled acetylene/hydrogen plasma for carbon nanofiber synthesis. J Vacuum Sci Technol B Microelectron Nanometer Struct 24:97

    Article  Google Scholar 

  • Pant M, Singh R, Negi P, Tiwari K, Singh Y (2021) A comprehensive review on carbon nano-tube synthesis using chemical vapor deposition. Mater Today Proc 46(20):11250–11253. ISSN 2214-7853

  • Park D et al (2003) Synthesis of carbon nanotubes on metallic substrates by a sequential combination of PECVD and thermal CVD. Carbon 41:1025–1029

    Article  Google Scholar 

  • Rathinavel S, Priyadharshini K, Panda D (2021) A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Mater Sci Eng B 268:115095, ISSN 0921-5107

  • Robertson J (2007) Growth of nanotubes for electronics. Mater Today 10:36–43

    Article  Google Scholar 

  • Sanvito S, Kwon YK, Tomanek D, Lambert CJ (2000) Fractional quantum conductance in carbon nanotubes. Phys Rev Lett 84:1974–1977

    Article  Google Scholar 

  • Shoukat R, Khan MI (2017) Growth of nanotubes using IC-PECVD as benzene carbon carrier. Microsyst Technol 23(12):5447–5453

    Article  Google Scholar 

  • Shoukat R, Khan MI (2018a) Synthesis of vertically aligned carbon nanofibers using inductively coupled plasma enhanced chemical vapor deposition. Electr Eng 100(2):997–1002

    Article  Google Scholar 

  • Shoukat R, Khan MI (2018b) Design and development of a clip building block system for MEMS. Microsyst Technol 24(2):1025–1031

    Article  Google Scholar 

  • Shoukat R, Khan MI (2018c) Nanotechnology based electrical control and navigation system for worm guidance using electric field gradient. Microsyst Technol 24:989–993

    Article  Google Scholar 

  • Shoukat R, Khan MI (2019) Synthesis of nanostructured based carbon nanowalls at low temperature using inductively coupled plasma chemical vapor deposition (ICP-CVD). Microsyst Technol 25:4439–4444

    Article  Google Scholar 

  • Shoukat R, Khan MI (2020) Amalgamation of aligned carbon nanostructures at low temperature and the synthesis of vertically aligned carbon nanofibers (CNFs). Microsyst Technol 26:1521–1529

    Article  Google Scholar 

  • Shoukat R, Khan MI (2021) Carbon nanotubes: a review on properties, synthesis methods and applications in micro and nanotechnology. Microsyst Technol 27:4183–4192

    Article  Google Scholar 

  • Singh S, Jarvis A (2010) Microwave plasma-enhanced chemical vapour deposition growth of carbon nanostructures. S Afr J Sci 106:4

    Google Scholar 

  • Singh C et al (2003) Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method. Carbon 41:359–368

    Article  Google Scholar 

  • Vajtai R, Wei BQ, Ajayan PM (2004) Controlled growth of carbon nanotubes. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 362:2143

    Article  Google Scholar 

  • Wei S, Kanga WP, Davidson JL, Choi BK, Huang JH (2006) vertically aligned carbon nanotube field emission devices fabricated by furnace thermal chemical vapor deposition at atmospheric pressure. J Vacuum Sci Technol B Microelectron Nanometer Struct 24:1190

    Article  Google Scholar 

  • Xia ZH, Guduru PR, Curtin WA (2007) Enhancing mechanical properties of multiwall carbon nanotubes via sp3 interwall bridging. Phys Rev Lett 98:245501

    Article  Google Scholar 

  • Xie S, Li W, Pan Z, Chang B, Sun L (2000) Carbon nanotube arrays. Mater Sci Eng A 286:11–15

    Article  Google Scholar 

  • Xu B et al (2007a) Growth of well-aligned carbon nanotubes in a plasma system using ferrocene solution in ethanol. Thin Solid Films 515:6726–6729

    Article  Google Scholar 

  • Xu B, Deng H, Dai Y, Yang B (2007b) Novel aerosol method for aligned carbon nanotubes synthesis, vol 17. Transactions of the Nonferrous Metals Society of China

  • Yuji T, Sung Y (2007) RF PECVD characteristics for the growth of carbon nanotubes in a CH4–N2 mixed gas. IEEE Trans Plasma Sci 35:1027–1032

    Article  Google Scholar 

  • Zhou M, Luo P, Li A, Wu Y, Khan MI, Lyu J, Li F, Li G (2018) Fabrication of silica membrane through surface-induced condensation on porous block copolymer. Chem Select Commun 3(33):9694–9699

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizwan Shoukat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoukat, R., Khan, M.I. Carbon nanotubes/nanofibers (CNTs/CNFs): a review on state of the art synthesis methods. Microsyst Technol 28, 885–901 (2022). https://doi.org/10.1007/s00542-022-05263-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-022-05263-2

Navigation