Skip to main content
Log in

Studies on synthesis and microstructure evolution of multiphase in-situ composites based on Mo-Cr-Si system

  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This paper presents the results on in-situ synthesis of refractory metal-intermetallic composites (RMICs), Mo-16Cr-4Si and Mo-11Cr-9Si (wt.%) multiphase alloys and their characterization. The alloys were prepared from the oxides of molybdenum and chromium by their coreduction with Si as reductant. Exothermic nature of the synthesis reactions resulted in the formation of consolidated composite as a product in a single step. As-reduced alloys were remelted by arc melting and heat treatment was given. The evolution of phases and the microstructure were studied by XRD, SEM, and EDS analysis. The multiphase microstructure consist of the silicide phases (Mo,Cr)3Si + (Mo,Cr)5Si3 for hypereutectic and (Mo,Cr)3Si phase distributed in bcc matrix comprising essentially a solid solution of (Mo,Cr) for hypo-peritectic composition. Comparative studies of the synthesized alloys were also carried out to the composition, phases, microstructure, hardness and their oxidation behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rembar Molybdenum Technical Information, The Rembar Company Inc., NY, USA.

  2. Gulbransen E A, Andrew K F and Brassart F A, J. Electrochem. Soc. 110 (1963) 952.

    Article  CAS  Google Scholar 

  3. Choe H, Chen D, Schneibel J H and Ritchie R O, Intermetallics 9 (2001) 319

    Article  CAS  Google Scholar 

  4. Kurishita H, Shiraishi J, Matsubara R and Yoshinaga H, J. Japan Inst. Met. 49 (1985) 963.

    CAS  Google Scholar 

  5. Tsurekawa S M, Nakashima M and Yoshinaga H, J. Japan. Inst. Met. 58 (1994) 994.

    CAS  Google Scholar 

  6. Suzuki T, Nomura N, Yoshimi K and Hanada S, J Japan Inst. Met. 64 (2000) 1082.

    CAS  Google Scholar 

  7. Suzuki T, Matsumoto H, Nomura N and Hanada S, Sci. Tech. Adv. Mater. 3 (2002) 137.

    Article  CAS  Google Scholar 

  8. Schneibel J H, Liu C T, Easton D S and Carmichael C A, Mater. Sci Eng. A 261 (1999) 78.

    CAS  Google Scholar 

  9. Yoshimi K, Nakatani S, Suda T and Hanada S, Trans. MRS-J. 26 (2001) 141.

    CAS  Google Scholar 

  10. Peng L M, Wang J H, Lib H and Gonga M, J. Alloy Comp. 420 (2006) 77.

    Article  CAS  Google Scholar 

  11. Mitra R, Khanna R and Rao V V R, Mater. Sci. Eng. A 382 (2004) 150.

    Article  Google Scholar 

  12. Umakoshi Y, Hirano T, Sakagami T, Yamane T, in High Temperature Aluminides and Intermetallics, (ed) Whang S H, Liu C T, Pope D P, Stiegler J O, TMS-AIME, Warrendale, PA, (1990), p 111.

    Google Scholar 

  13. Subramanian P R, Mendiratta, G. Madan, Dimiduk, M. Dennis, US Patent 5505793, 1996.

  14. Lee D B and Simkovicht G, Oxid. Met. 31 (1989) 265.

    Article  CAS  Google Scholar 

  15. Ochiai S, Intermetallics 14 (2006) 1351.

    Article  CAS  Google Scholar 

  16. Sharma I G, Chakraborty S P and Suri A K, J. Alloy Comp. 393 (2005) 122.

    Article  CAS  Google Scholar 

  17. Chakraborty S P, Banerjee S, Sharma I G, Paul B and Suri A K, J. Alloy Comp. 477 (2009) 256.

    Article  CAS  Google Scholar 

  18. Dautzenberg W, Das in metallothermische Verchutten Ohne Zufuhr elements, elektrischer Energie, (ed) Volkart G, Frank K D, Metallurgie der Ferrolegierungen, 2nd edn., Springer, Berlin, (1972) 59.

    Google Scholar 

  19. Hall I H, in Aluminothermic process, Ulmans Encyclopedia of Industrial chemistry, (ed) Verlag Chemie, Weinheim, 5th edn. (1985) 447.

    Google Scholar 

  20. Dautzenberg W, Aluminothermic, Ulmans Encyklopadie der Technischen Chemie, Verlag Chemie, Weinheim, 4th edn.,(1974) 351.

    Google Scholar 

  21. Keryvin V, Hoang V H and Shen J Intermetallics, 17 (2009) 211.

    Article  CAS  Google Scholar 

  22. Czernuszka J T and Page T F J. Mater. Sc., 27 (1992) 1683.

    Article  CAS  Google Scholar 

  23. Mukhopadhyay N K, Weatherly G C, Embury J D, Mater. Sci. Eng. A, 315 (2001) 202.

    Article  Google Scholar 

  24. Mukhopadhyay N K, Paufler P, Int. Mater. Rev., 51 (2006) 209.

    Article  CAS  Google Scholar 

  25. Misra A, Petrovic J J and Mitchell T E Scri. Mater., 40 (1999) 191.

    Article  CAS  Google Scholar 

  26. Samsonov G V and Vinitskii I M, Handbook of Refractory Compounds, IFI/Plenum Company, New York (1980) 287.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaskar Paul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, B., Suri, A.K. Studies on synthesis and microstructure evolution of multiphase in-situ composites based on Mo-Cr-Si system. Trans Indian Inst Met 64, 105 (2011). https://doi.org/10.1007/s12666-011-0021-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-011-0021-9

Keywords

Navigation