Skip to main content
Log in

Influence of Rare Earth Elements on the Structural-Phase State of Mo–Si–X (X = Sc, Y, Nd) in situ Composites

  • General Purpose Materials
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The microstructure and phase composition of the Mo-Si alloy doped with Sc, Y or Nd were investigated. The methods of X-ray diffraction analysis (XRD), electron microscopy, and electron probe microanalysis (EPMA) were used to determine the main phase components and their volume fractions as well as to assess the speciation and interphase distributions of doping rare earth elements (REE). It was shown that, when introducing up to 3.0 at % Si, Y, or Nd into the Mo–15.3 at % Si hypoeutectic alloy, the structure intrinsic to naturally occurring (in situ) composites was formed. This structure was composed of an α-Mo based solid solution and a strengthening silicide phase including Mo3Si and the particles of complex composition enriched in REE. Doping additives contributed significantly to the microstructure dispersity and modified the morphology of particles of both the metallic and silicide phases, and increased the Moss/Mo3Si volume ratio. The microhardness of structural components was determined and the parameters of lattice elementary cells of the main phases were evaluated for the REE-doped alloys under study. The observed regularities of their variations generally conformed to the conclusions about the influence of REE on the structural-phase state of the Mo-Si hypoeutectic composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karpov, M.I., Svetlov, I.L., and Popova, O.I., Heat-resistant materials based on niobium and molybdenum, in Novye materialy: perspektivnye tekhnologii metallurgii (New Materials: Advanced Technologies in Metallurgy), Moscow: Vseross. Inst. Aviats. Mater., 2014, p. 17.

    Google Scholar 

  2. Kablov, E.N., Svetlov, I.L., and Efimochkin, I.Yu., High-temperature Nb–Si composites, Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Ser. Mashinostr., 2011, suppl. 2, pp. 164–173.

    Google Scholar 

  3. Svetlov, I.L., Abuzin, Yu.A., Babich, B.N., et al., High-temperature niobium composites reinforced with niobium silicides, Zh. Funkts. Mater., 2007, vol. 1, no. 2, pp. 48–53.

    Google Scholar 

  4. Jackson, M.R., Bewlay, B.P., Rowe, R.G., Skelly, D.W., and Lipsitt, H.A., High-temperature refractory metalintermetallic composites, JOM, 1996, vol. 48, no. 1, pp. 39–44.

    Article  CAS  Google Scholar 

  5. Bewlay, B.P., Jackson, M.R., Zhao, J.-C., and Subramanian, P.R., A review of very-high-temperature Nb–silicide-based composites, Metall. Mater. Trans. A, 2003, vol. 34, pp. 2043–2052.

    Article  Google Scholar 

  6. Chen, Y., Hammerschmidt, T., Pettifor, D.G., Shang, J.-X., and Zhang, Y., Influence of vibrational entropy on structure stability of Nb–Si and Mo–Si systems at elevated temperatures, Acta Mater., 2009, vol. 57, pp. 2657–2664.

    Article  CAS  Google Scholar 

  7. Okamoto, H., Nb–Si (niobium–silicon), J. Phase Equilib. Diffus., 2005, vol. 26, no. 6, p. 649.

    Article  CAS  Google Scholar 

  8. Gokhale, A.B. and Abbaschian, G.J., The Mo–Si (molybdenum–silicon) system, J. Phase Equilib., 1991, vol. 12, no. 4, pp. 493–498.

    Article  CAS  Google Scholar 

  9. Chen, H., Ma, Q., Shao, X., Ma, J., Wang, C., and Huang, B., Microstructure, mechanical properties and oxidation resistance of Mo5Si3–Al2O3 composite, Mater. Sci. Eng., A, 2014, vol. 592, pp. 12–18.

    Article  CAS  Google Scholar 

  10. Vasudevan, A.K. and Petrovic, J., A comparative overview of molybdenum disilicide composites, Mater. Sci. Eng., A, 1992, vol. 155, pp. 1–17.

    Article  Google Scholar 

  11. Ingemarsson, L., Hellström, K., Johansson, L.G., Svensson, J.E., and Halvarsson, M., Oxidation behavior of a Mo(Si, Al)2 based composite at 1500°C, Intermetallics, 2011, vol. 19, pp. 1319–1329.

    CAS  Google Scholar 

  12. Ashby, M.F., Blunt, F.J., and Bannister, M., Flow characteristics of highly constrained metal wires, Acta Metall., 1989, vol. 37, pp. 1847–1857.

    Article  CAS  Google Scholar 

  13. Rosales, I. and Schneibel, J.H., Stoichiometry and mechanical properties of Mo3Si, Intermetallics, 2000, vol. 8, pp. 885–889.

    Article  CAS  Google Scholar 

  14. Mousa, M., Wanderka, N., Timpel, M., Singh, S., Krüger, M., Heilmaier, M., and Banhart, J., Modification of Mo–Si alloy microstructure by small additions of Zr, Ultramicroscopy, 2011, vol. 111, pp. 706–710.

    Article  CAS  Google Scholar 

  15. Jehanno, P., Saage, M., Boning, M., Kestler, H., Freudenberger, J., and Drawin, S., Assessment of the high temperature deformation behavior of molybdenum silicide alloys, Mater. Sci. Eng., A, 2007, vol. 463, pp. 216–223.

    Article  Google Scholar 

  16. Krüger, M., Jain, P., Kumar, K.S., and Heilmaier, M., Correlation between microstructure and properties of fine-grained Mo–Mo3Si–Mo5SiB2 alloys, Intermetallics, 2014, vol. 8, pp. 10–18.

    Article  Google Scholar 

  17. Larionov, A.V., Udoeva, L.Yu., Chumarev, V.M., and Mansurova, A.N., Thermodynamic simulation of phase formation in the Mo–Si alloys doped with yttrium, Butlerovskie Soobshch., 2015, vol. 43, no. 9, pp. 84–88.

    Google Scholar 

  18. Larionov, A.V., Udoeva, L.Yu., and Chumarev, V.M., Thermodynamic simulation of phase formation in the Mo–Si, alloys doped with scandium or neodymium, Butlerovskie Soobshch., 2015, vol. 43, no. 9, pp. 89–96.

    Google Scholar 

  19. Mansurova, A.N., Larionov, A.V., Tyushnyakov, S.N., and Marshuk, L.A., Phase composition and microstructure of Mo–Si alloys, obtained under nonequilibrium crystallization, Butlerovskie Soobshch., 2015, vol. 43, no. 9, pp. 97–101.

    Google Scholar 

  20. Northcott, L., Molybdenum, London: Butterworths, 1956.

    Google Scholar 

  21. Samsonov, G.V., Dvorina, L.A., and Rud’, B.M., Silicidy (Silicides), Moscow: Metallurgiya, 1979.

    Google Scholar 

  22. Kotur, B.YA. and Bodak, O.I., Triple systems of Sc–Mo–Si and Sc–Mo–Ge at 1070K, Metally, 1988, no. 4, pp. 189–192.

    Google Scholar 

  23. Bodak, O.I., Gorelenko, Yu.K., Yarovets, V.I., and Kolozdra, R.V., Crystalline structure and magnetic properties of R2Mo3Si4 compounds (R–Y, Tb, Dy, Ho, Er, Tm), Neorg. Mater., 1984, vol. 20, no. 5, pp. 853–855.

    CAS  Google Scholar 

  24. Kablov, E.N., Ospennikova, O.G., and Vershkov, A.V., Rare metals and rare earth elements are the materials for modern and prospective high technologies, Tr. Vseross. Nauchno-Issled. Inst. Aviats. Mater., 2013, no. 2. http://viam-works.ru/ru/articles?art_id=9.

  25. Stringer, J., The reactive element effect in high-temperature corrosion, Mater. Sci. Eng., A, 1989, vol. 120, pp. 129–137.

    Article  Google Scholar 

  26. Udoeva, L.Yu, Chumarev, V.M., Leontev, L.I., and Sel’menskikh, N.I., Structural-phase state of the Nb–Si eutectic alloys doped by yttrium and scandium, Tsvetn. Met., 2014, no. 8, pp. 59–65.

    Google Scholar 

  27. Chumarev, V.M., Leont’ev, L.I., Udoeva, L.Yu., Sel’menskikh, N.I., Gulyaeva, R.I., Zhidovinova, S.V., and Larionov, A.V., Effect of boron and yttrium on the phase composition and the microstructure of natural Nb–Si composites, Russ. Metall. (Engl. Transl.), 2014, vol. 2014, no. 9, pp. 688–696.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Yu. Udoeva.

Additional information

Original Russian Text © L.Yu. Udoeva, V.M. Chumarev, A.V. Larionov, S.V. Zhidovinova, S.N. Tyushnyakov, 2017, published in Perspektivnye Materialy, 2017, No. 7, pp. 24–33.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udoeva, L.Y., Chumarev, V.M., Larionov, A.V. et al. Influence of Rare Earth Elements on the Structural-Phase State of Mo–Si–X (X = Sc, Y, Nd) in situ Composites. Inorg. Mater. Appl. Res. 9, 257–263 (2018). https://doi.org/10.1134/S2075113318020296

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113318020296

Keywords

Navigation