Skip to main content
Log in

A study of nonisothermal tempering kinetics in plain 9Cr 1Mo steel

  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The present study elaborates the behavior of tempering reaction of nuclear grade plain 9Cr 1Mo martensitic steel investigated under a constant heating rate imposed by a high temperature heat flux differential scanning calorimeter (DSC). The heating rate imposed is varied from 1 to 30 K min−1. The inflection in the baseline which occurs during the tempering reaction namely, martensite (α′) to ferrite (α) + chromium carbide (M23C6) around 873 K is identified in the DSC profile as the typical tempering onset temperature. The DSC profiles are used to characterize the extent of carbide precipitation under different heating rates. The analysis of the kinetics of tempering reaction is performed using Kolmogorov-Johnson-Mehl-Avrami (KJMA) model to extract the kinetic parameters. In addition, the Kissinger method of obtaining apparent activation energy (Qeff) is also attempted. The value of the Qeff obtained using both of the models are in good agreement and suggest that bulk diffusion of chromium in iron lattice could be the rate controlling mechanism in the tempering of 9Cr-steels. The effect of tempering reaction is also supported by metallographic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Masuyama F, ISIJ International, 41 (2001) 612.

    Article  CAS  Google Scholar 

  2. Klueh R L, Int. Mater. Rev., 50, (2005) 287.

    Article  CAS  Google Scholar 

  3. Cerjak H, Hofer P and Schaffernak B, ISIJ International, 39 (1999) 874.

    Article  CAS  Google Scholar 

  4. Klueh R L, J. Nucl. Mater., 378 (2008) 159.

    Article  CAS  Google Scholar 

  5. Shtansky D V and Inden G, Acta Mater., 45 (1997) 2861.

    Article  CAS  Google Scholar 

  6. Thomson R C and Miller M K, Acta Mater., 46 (1998) 2203.

    Article  CAS  Google Scholar 

  7. Inoue A and Masumoto T, Metall. Trans., 11A (1980) 739.

    CAS  Google Scholar 

  8. Kroupa A, Vyrostková A, Svoboda M, Janovec J, Acta Mater., 46 (1998) 39.

    Article  CAS  Google Scholar 

  9. Robson J D, Bhadeshia H K D, Mater. Sci. Tech., 13 (1997) 631.

    CAS  Google Scholar 

  10. Robson J D, Bhadeshia H K D, Mater. Sci. Tech., 13 (1997) 640.

    CAS  Google Scholar 

  11. Mittemeijer E J, Liu Cheng, Vander Schaaf P J, Brakman C M and Korevaar B M, Metall and Mater. Sci., 19 (1988) 925.

    Article  Google Scholar 

  12. Leiva J A, Morales E V, Villar-Cocina E, Donis C A and Ivani de S. Bott, J. Mater. Sci., 45 (2010) 418.

    Article  CAS  Google Scholar 

  13. Minsu Jung Seok-Jae Lee and Young-Kook Lee, Metall. Mater. Trans., 40 (2009) 551.

    Article  Google Scholar 

  14. Arun Kumar Rai, Raju S, Jeyaganesh B, Mohandas E, Sudha S and Ganesan V, J. Nucl. Mater., 383 (2009) 215.

    Article  CAS  Google Scholar 

  15. Cullity B.D. and Stock S.R., Elements of X-ray diffraction, second ed., Prentice Hall, Upper Saddle River (NJ, USA) (2001).

    Google Scholar 

  16. Jeya Ganesh B, Raju S, Arun Kumar Rai, Mohandas E, Vijayalakshmi M,. Rao K B S, Baldev Raj, Mater. Sci. Tech., 27 (2011) 500.

    Article  Google Scholar 

  17. Johnson W A and Mehl R F, Trans. AIME, 135 (1939) 416.

    Google Scholar 

  18. Avrami M, J. Chem. Phys., 7 (1939) 1103.

    Article  CAS  Google Scholar 

  19. Avrami M, J. Chem. Phys., 8 (1940) 212.

    Article  CAS  Google Scholar 

  20. Kruger P, J. Phys. Chem. Solids, 54 (1993) 1549.

    Article  Google Scholar 

  21. Verdi C and Visintin A, Acta Metall., 35 (1982) 2711.

    Google Scholar 

  22. Cahn J W, Acta Metall., 4 (1956) 572.

    Article  CAS  Google Scholar 

  23. Hawbolt E B, Chau B and Brimacombe J K, Metall. Trans., 14A (1983) 1803.

    CAS  Google Scholar 

  24. Leblond J B and Devaux J, Acta Metall., 32 (1984) 137.

    Article  CAS  Google Scholar 

  25. Umemoto M, Horiuchi K and Tamura I, Trans. ISIJ, 22 (1983) 690.

    Article  Google Scholar 

  26. Starink M J, Zahra A M, Thermochim. Acta, 292 (1997) 159.

    Article  CAS  Google Scholar 

  27. S. Vyazovkin and V. Goryachko, Thermochim. Acta, 194 (1992) 221.

    Article  CAS  Google Scholar 

  28. Liu F, Sommer F, and Mittemeijer E J, J. Mater. Sci., 39 (2004) 1621.

    Article  CAS  Google Scholar 

  29. Christian J W, The Theory of Transformations in Metals and Alloys, Part I: Equilibrium and General Kinetic Theory, second ed., Pergamon Press, Oxford, (1975) 542

    Google Scholar 

  30. Williams P I, Faulkner R G, J. Mater. Sci., 22 (1987) 3537.

    Article  CAS  Google Scholar 

  31. Starink M J, Int. Mater. Rev., 49 (2004) 191.

    Article  CAS  Google Scholar 

  32. Ozawa T, J. Thermal analysis, 2 (1970) 301.

    Article  CAS  Google Scholar 

  33. Boswell P G, J. Thermal Analysis, 18 (1980) 353.

    Article  CAS  Google Scholar 

  34. Starink M J, Thermochim. Acta, 404 (2003) 163.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Jeya Ganesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeya Ganesh, B., Raju, S., Rai, A.K. et al. A study of nonisothermal tempering kinetics in plain 9Cr 1Mo steel. Trans Indian Inst Met 64, 93 (2011). https://doi.org/10.1007/s12666-011-0019-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-011-0019-3

Keywords

Navigation