Skip to main content
Log in

Understanding creep in nanocrystalline materials

  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Only a limited number of creep investigations have been carried out on nanocrystalline materials to-date. These studies have remained largely inconclusive in establishing the mechanisms of creep in nanocrystalline materials. The stress exponent and activation energy values obtained from nanocrystalline materials do not correlate well with conventional well established creep models. Furthermore discrepancies between experimentally determined deformation rates and theoretical predictions suggest that an entirely new mechanism of creep could be operational in these exotic materials. In this work we aim to develop an understanding of the creep behavior of nanocrystalline materials by considering a stress assisted grain growth mechanism that has been recently identified in these materials. In turn a model has been developed that provides a quantitative understanding of some of the observations made in creep literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Mishra R S and Mukherjee A K, Scr. Mater., 34 (1996) 1765

    Article  CAS  Google Scholar 

  2. Mishra R S, Valiev R Z, McFadden S X and Mukherjee A K, Mat. Sci. Engg. A, 252 (1998) 174.

    Article  Google Scholar 

  3. Koch C C, Scripta Mater., 49 (2003) 657.

    Article  CAS  Google Scholar 

  4. Nieman G W, Weertman J and Siegel R W, J. Mat. Res., 6 (1991) 1012.

    Article  CAS  ADS  Google Scholar 

  5. Hahn H and Averback R S, J. Amer. Cer. Soc., 74 (1991) 2918.

    Article  CAS  Google Scholar 

  6. Taketani K, Uoya A, Ohtera K, Uehara T, Higashi K, Inoue A and Masumoto T, J. Mat. Sci., 29 (1994) 6513.

    Article  CAS  ADS  Google Scholar 

  7. Deng J, Wang D L, Kong Q P and Shui J P, Scr. Metall. Mater., 32 (1995) 349.

    Article  CAS  Google Scholar 

  8. Kong Q P, Cai B and Xiao M L, Mater. Sci. Engg. A, 234–236 (1997) 91.

    Article  Google Scholar 

  9. Sanders P G, Rittner M, Kiedaisch E, Weertman J R, Kung H and Lu Y C, Nanostr. Mater., 9 (1997) 433.

    Article  CAS  Google Scholar 

  10. Wang N., Wang Z., Aust K.T and Erb U., Mat Sci Engg A, 237 (1997) 150.

    Article  Google Scholar 

  11. Cai B, Kong Q P, Lu L and Lu K, Mater. Sci. Engg. A, 286 (2000) 188.

    Article  Google Scholar 

  12. Cai B, Kong Q P, Cui P, Lu L and Lu K, Scripta Mater., 45 (2001) 1407.

    Article  CAS  Google Scholar 

  13. Yin W M, Whang S H, Mirshams R and Xiao C H, Mat Sci Engg A, 301 (2001) 18.

    Article  Google Scholar 

  14. Kottada R S. and Chokshi A H, Scripta Mater., 53 (2005) 887.

    Article  CAS  Google Scholar 

  15. Mohamed F A and Chauhan M, Metall. Mater. Trans., 37A (2006) 3555.

    Article  CAS  Google Scholar 

  16. Chokshi A H, Rosen A, Karch J and Gleiter H, Scr. Metall., 23 (1989) 1679.

    Article  CAS  Google Scholar 

  17. Coble R L, J. Appl. Phys., 34 (1963) 1679.

    Article  ADS  Google Scholar 

  18. Mohamed F A and Li Y, Mater. Sci. Engg. A, 298 (2001) 1.

    Article  Google Scholar 

  19. Zhang K, Weertman J and Eastman J A, Appl. Phys. Lett., 85 (2004) 5197.

    Article  CAS  ADS  Google Scholar 

  20. Morris Jr. J W, Jin M, Minor A M, Mater. Sci. Engg. A, 462 (2006) 412.

    Article  Google Scholar 

  21. Haslam J, Yamakov V, Moldovan D, Wolf D, Phillpot S R, Gleiter H, Acta Mater., 52 (2004) 1971.

    Article  CAS  Google Scholar 

  22. Ashby M F and Verrall R A, Acta Metall., 21 (1973) 149.

    Article  CAS  Google Scholar 

  23. Estrin Y, Gottstein G, Rabkin G and Shvindlerman L S, Acta Mater., 49 (2001) 673.

    Article  CAS  Google Scholar 

  24. Schiotz J, Mat. Sci. Engg., 375–377A (2004) 975.

    Article  Google Scholar 

  25. Li J C M, Phys. Rev. Lett., 96 (2006) 215506.

    Article  ADS  PubMed  Google Scholar 

  26. Chu S N, Li J C M, J. Mat. Sci., 12 (1977) 2200.

    Article  CAS  ADS  Google Scholar 

  27. Yang F, Li J C M, Mat. Sci. Engg. A, 201 (1995) 40.

    Article  Google Scholar 

  28. Godavarti P S and Murty K L, J. Mat. Sci. Let. 6 (1987) 456.

    Article  CAS  Google Scholar 

  29. Rajulapati K V, Ph. D. Dissertation, North Carolina State University (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gollapudi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gollapudi, S., Rajulapati, K.V., Charit, I. et al. Understanding creep in nanocrystalline materials. Trans Indian Inst Met 63, 373–378 (2010). https://doi.org/10.1007/s12666-010-0050-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-010-0050-9

Keywords

Navigation