Skip to main content
Log in

Bio-mediated geotechnology and its application in geoengineering: mechanism, approach, and performance

  • Review
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Bio-mediated geotechnology refers to the technology that utilizes various types of microbial processes to improve the hydro-mechanical behavior of soil and rock, aiming for the prevention and mitigation of geoengineering problems. This paper provides a detailed and comprehensive review of bio-mediated geotechnologies, aiming to enhance understanding in this field. The review encompasses mechanisms, influencing factors, engineering properties, applications, as well as challenges and prospects associated with bio-mediated geotechnologies. Three typical bio-mediated geotechnologies are examined: biomineralization, biofilm, and biogas, with a specific focus on microbially induced calcium carbonate precipitation (MICP). Key factors affecting MICP efficacy, including bacteria species, bacteria concentration, temperature, pH, cementation solution, soil properties, and treatment strategies, are elaborated upon. The paper highlights the significant improvements in mechanical strength, permeability reduction, and erosion resistance achieved through MICP treatment. Furthermore, a wide range of applications for MICP in geotechnical and environmental domains are reviewed, spanning from foundation treatment to geological disaster prevention. Despite its promise, MICP faces challenges such as environmental impact mitigation, uniform distribution, and large-scale application. The paper concludes by discussing future research directions, emphasizing interdisciplinary collaborations and innovative approaches to address these challenges and fully realize the potential of MICP in geotechnical engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The data are available from the corresponding author on reasonable request.

References

  • Achal V, Mukherjee A, Basu P, Reddy MS (2009) Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J Ind Microbiol Biotechnol 36(7):981–988

    Article  CAS  Google Scholar 

  • Achal V, Pan X, Zhang D (2011) Remediation of copper-contaminated soil by Kocuria flava cr1, based on microbially induced calcite precipitation. Ecol Eng 37(10):1601–1605

    Article  Google Scholar 

  • Ahenkorah I, Rahman MM, Karim MR, Beecham S (2021) Enzyme induced calcium carbonate precipitation and its engineering application: a systematic review and meta-analysis. Constr Build Mater 308:125000

    Article  CAS  Google Scholar 

  • Al Qabany A, Soga K (2013) Effect of chemical treatment used in micp on engineering properties of cemented soils. Geotechnique 63(4):331

    Article  Google Scholar 

  • Al Qabany A, Soga K, Santamarina C (2012) Factors affecting efficiency of microbially induced calcite precipitation. J Geotech Geoenviron Eng 138(8):992–1001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000666

    Article  CAS  Google Scholar 

  • Alba J, Audibert J (1999) Pile design in calcareous and carbonaceous granular materials, and historic review. In: Proceedings of the 2nd international conference on engineering for calcareous sediments. AA Balkema, Rotterdam, pp 29–44

  • Almajed A, Khodadadi Tirkolaei H, Kavazanjian E Jr (2018) Baseline investigation on enzyme-induced calcium carbonate precipitation. J Geotech Geoenviron Eng 144(11):04018081

    Article  Google Scholar 

  • Al-Salloum Y, Abbas H, Sheikh Q, Hadi S, Alsayed S, Almusallam T (2017) Effect of some biotic factors on microbially-induced calcite precipitation in cement mortar. Saudi J Biol Sci 24(2):286–294

    Article  CAS  Google Scholar 

  • Al-Thawadi S (2008) High strength in-situ biocementation of soil by calcite precipitating locally isolated ureolytic bacteria. Murdoch University

  • Arboleda-Monsalve LG, Zapata-Medina DG, Galeano-Parra DI (2019) Compressibility of biocemented loose sands under constant rate of strain, loading, and pseudo k0-triaxial conditions. Soils Found 59(5):1440–1455

    Article  Google Scholar 

  • Bahmani M, Noorzad A, Hamedi J, Sali F (2017) The role of Bacillus pasteurii on the change of parameters of sands according to temperature compression and wind erosion resistance. J CleanWAS 1(2):1–5

    Article  Google Scholar 

  • Bang SC, Min SH, Bang SS (2011) Application of microbiologically induced soil stabilization technique for dust suppression. Int J Geo-Eng 3(2):27–37

    Google Scholar 

  • Bansal R, Dhami NK, Mukherjee A, Reddy MS (2016) Biocalcification by halophilic bacteria for remediation of concrete structures in marine environment. J Ind Microbiol Biotechnol 43(11):1497–1505

    Article  CAS  Google Scholar 

  • Baveye P, Vandevivere P, Hoyle BL, DeLeo PC, de Lozada DS (1998) Environmental impact and mechanisms of the biological clogging of saturated soils and aquifer materials. Crit Rev Environ Sci Technol 28(2):123–191

    Article  CAS  Google Scholar 

  • Benhelal E, Zahedi G, Shamsaei E, Bahadori A (2013) Global strategies and potentials to curb co2 emissions in cement industry. J Cleaner Prod 51:142–161

    Article  Google Scholar 

  • Blakeley RL, Zerner B (1984) Jack bean urease: the first nickel enzyme. J Mol Catal 23(2–3):263–292

    Article  CAS  Google Scholar 

  • Blauw M, Lambert J, Latil M-N (2009) Biosealing: a method for in situ sealing of leakages. In: Proceedings of the international symposium on ground improvement technologies and case histories, ISGI, pp 125–130

  • Blundell N, Cuthbert M, Riley M, Handley-Sidhu S, Renshaw J (2012) Engineering biomineralised groundwater flow barriers for inhibiting radionuclide transport in fractured rocks. EGUGA, p 4605

  • Bora R, Maini B, Chakma A (2000) Flow visualization studies of solution gas drive process in heavy oil reservoirs using a glass micromodel. SPE Reserv Eval Eng 3(03):224–229

    Article  CAS  Google Scholar 

  • Boskey AL (1998) Biomineralization: conflicts, challenges, and opportunities. J Cell Biochem 72(S30–31):83–91

    Article  Google Scholar 

  • Bucci NA, Ghazanfari E, Lu H (2016) Microbially-induced calcite precipitation for sealing rock fractures. Geo-Chicago 2016:558–567

    Google Scholar 

  • Canakci H, Sidik W, Halil Kilic I (2015) Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil. Soils Found 55(5):1211–1221. https://doi.org/10.1016/j.sandf.2015.09.020

    Article  Google Scholar 

  • Castanier S, Le Métayer-Levrel G, Perthuisot J-P (1999) Ca-carbonates precipitation and limestone genesis—the microbiogeologist point of view. Sediment Geol 126(1–4):9–23

    CAS  Google Scholar 

  • Castanier S, Le Metayer-Levrel G, Perthuisot J-P (2000) Bacterial roles in the precipitation of carbonate minerals. Microbial sediments. Springer, Berlin, pp 32–39

    Chapter  Google Scholar 

  • Castro-Alonso MJ, Montañez-Hernandez LE, Sanchez-Muñoz MA, Macias Franco MR, Narayanasamy R, Balagurusamy N (2019) Microbially induced calcium carbonate precipitation (micp) and its potential in bioconcrete: microbiological and molecular concepts. Front Mater 6:126

    Article  Google Scholar 

  • Cheng L, Cord-Ruwisch R (2012) In situ soil cementation with ureolytic bacteria by surface percolation. Ecol Eng 42:64–72

    Article  Google Scholar 

  • Cheng L, Cord-Ruwisch R (2014) Upscaling effects of soil improvement by microbially induced calcite precipitation by surface percolation. Geomicrobiol J 31(5):396–406

    Article  CAS  Google Scholar 

  • Cheng L, Qian C-x, Wang R-x, J-y WANG (2007a) Study on kinetics and morphology of formation of caco~ 3 crystal induced by carbonate-mineralization microbe. J Funct Mater 38(9):1511

    CAS  Google Scholar 

  • Cheng L, Qian C, Wang R, Wang J (2007b) Study on the mechanism of calcium carbonate formation induced by carbonate-mineralization microbe. Acta Chim Sin 65(19):2133–2138

    CAS  Google Scholar 

  • Cheng L, Cord-Ruwisch R, Shahin MA (2013a) Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Can Geotech J 50(1):81–90

    Article  CAS  Google Scholar 

  • Cheng X, Ma Q, Yang Z, Zhang Z, Li M (2013b) Dynamic response of liquefiable sand foundation improved by bio-grouting. Chin J Geotech Eng 35(8):1486–1495

    CAS  Google Scholar 

  • Cheng L, Shahin MA, Mujah D (2017) Influence of key environmental conditions on microbially induced cementation for soil stabilization. J Geotech Geoenviron Eng 143(1):04016083

    Article  Google Scholar 

  • Cheng L, Shahin MA, Chu J (2019) Soil bio-cementation using a new one-phase low-ph injection method. Acta Geotech 14(3):615–626

    Article  Google Scholar 

  • Cheng L, Shahin M, Cord-Ruwisch R, Addis M, Hartanto T, Elms C (2014) Soil stabilisation by microbial-induced calcite precipitation (micp): Investigation into some physical and environmental aspects. In: 7th International congress on environmental geotechnics: iceg2014. Engineers Australia, p 1105

  • Choi S-G, Wang K, Chu J (2016) Properties of biocemented, fiber reinforced sand. Constr Build Mater 120:623–629

    Article  CAS  Google Scholar 

  • Choi S-G, Wang K, Wen Z, Chu J (2017) Mortar crack repair using microbial induced calcite precipitation method. Cem Concr Compos 83:209–221

    Article  CAS  Google Scholar 

  • Choi S-G, Chang I, Lee M, Lee J-H, Han J-T, Kwon T-H (2020) Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (micp) and biopolymers. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.118415

    Article  Google Scholar 

  • Chou C-W, Seagren EA, Aydilek AH, Lai M (2011) Biocalcification of sand through ureolysis. J Geotech Geoenviron Eng 137(12):1179–1189

    Article  CAS  Google Scholar 

  • Chu J, Ivanov V, Stabnikov V, Li B (2013) Microbial method for construction of an aquaculture pond in sand. Geotechnique 63(10):871

    Article  Google Scholar 

  • Chu J, Ivanov V, Naeimi M, Stabnikov V, Liu H-L (2014) Optimization of calcium-based bioclogging and biocementation of sand. Acta Geotech 9(2):277–285

    Article  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322

    Article  CAS  Google Scholar 

  • Cui M-J, Zheng J-J, Lai H-J (2017a) Effect of method of biological injection on dynamic behavior for bio-cemented sand. Rock Soil Mech 38(11):3173–3178

    Google Scholar 

  • Cui M-J, Zheng J-J, Zhang R-J, Lai H-J, Zhang J (2017b) Influence of cementation level on the strength behaviour of bio-cemented sand. Acta Geotech 12(5):971–986

    Article  Google Scholar 

  • Cunningham AB, Characklis WG, Abedeen F, Crawford D (1991) Influence of biofilm accumulation on porous media hydrodynamics. Environ Sci Technol 25(7):1305–1311

    Article  CAS  Google Scholar 

  • Cunningham A, Warwood B, Sturman P, Horrigan K, James G, Costerton JW, Hiebert R (1997) Biofilm processes in porous media-practical applications. Microbiol Terres Deep subsurf:325–344

  • Cunningham AB, Sharp RR, Hiebert R, James G (2003) Subsurface biofilm barriers for the containment and remediation of contaminated groundwater. Biorem J 7(3–4):151–164

    Article  CAS  Google Scholar 

  • Cunningham AB, Sharp RR, Caccavo F Jr, Gerlach R (2007) Effects of starvation on bacterial transport through porous media. Adv Water Resour 30(6–7):1583–1592

    Article  Google Scholar 

  • Cunningham AB, Phillips AJ, Troyer E, Lauchnor R, Hiebert R, Gerlach R, Spangler LH (2014) Wellbore leakage mitigation using engineered biomineralization. Energy Procedia 63:4612–4619

    Article  CAS  Google Scholar 

  • Cussac V, Ferrero RL, Labigne A (1992) Expression of helicobacter pylori urease genes in escherichia coli grown under nitrogen-limiting conditions. J Bacteriol 174(8):2466–2473

    Article  CAS  Google Scholar 

  • Cuthbert MO, McMillan LA, Handley-Sidhu S, Riley MS, Tobler DJ, Phoenix VR (2013) A field and modeling study of fractured rock permeability reduction using microbially induced calcite precipitation. Environ Sci Technol 47(23):13637–13643

    Article  CAS  Google Scholar 

  • Das N, Kayastha AM, Srivastava PK (2002) Purification and characterization of urease from dehusked pigeonpea (Cajanus cajan L.) seeds. Phytochemistry 61(5):513–521

    Article  CAS  Google Scholar 

  • De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36(2):118–136. https://doi.org/10.1016/j.ecoleng.2009.02.006

    Article  Google Scholar 

  • De Muynck W, Verbeken K, De Belie N, Verstraete W (2013) Influence of temperature on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Appl Microbiol Biotechnol 97(3):1335–1347

    Article  Google Scholar 

  • DeJong JT, Kavazanjian E (2019) Bio-mediated and bio-inspired geotechnics. In: Lu N, Mitchell JK (eds) Geotechnical fundamentals for addressing new world challenges. Springer, Cham, pp 193–207. https://doi.org/10.1007/978-3-030-06249-1_7

    Chapter  Google Scholar 

  • DeJong JT, Fritzges MB, Nüsslein K (2006) Microbially induced cementation to control sand response to undrained shear. J Geotech Geoenviron Eng 132(11):1381–1392

    Article  CAS  Google Scholar 

  • DeJong JT, Mortensen BM, Martinez BC, Nelson DC (2010) Bio-mediated soil improvement. Ecol Eng 36(2):197–210

    Article  Google Scholar 

  • Deng H, Luo Y, Deng J, Wu L, Zhang Y, Peng S (2019) Experimental study of improving impermeability and strength of fractured rock by microbial induced carbonate precipitation. Rock Soil Mech 40(9):3542–3548

    Google Scholar 

  • Dhami NK, Reddy MS, Mukherjee A (2013) Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. J Microbiol Biotechnol 23(5):707–714

    Article  CAS  Google Scholar 

  • Dilrukshi R, Kawasaki S (2016) Effective use of plant-derived urease in the field of geoenvironmental. Geotech Eng Civil Environ Eng 6(207):2

    Google Scholar 

  • El Mountassir G, Lunn RJ, Moir H, MacLachlan E (2014) Hydrodynamic coupling in microbially mediated fracture mineralization: formation of self-organized groundwater flow channels. Water Resour Res 50(1):1–16. https://doi.org/10.1002/2013WR013578

    Article  CAS  Google Scholar 

  • El Mountassir G, Minto JM, van Paassen LA, Salifu E, Lunn RJ (2018) Applications of microbial processes in geotechnical engineering. Advances in applied microbiology, vol 104. Elsevier, Oxford, pp 39–91

    Google Scholar 

  • Enouy R, Li M, Ioannidis M, Unger A (2011) Gas exsolution and flow during supersaturated water injection in porous media: II. Column experiments and continuum modeling. Adv Water Resour 34(1):15–25

    Article  CAS  Google Scholar 

  • Ercole C, Bozzelli P, Altieri F, Cacchio P, Del Gallo M (2012) Calcium carbonate mineralization: Involvement of extracellular polymeric materials isolated from calcifying bacteria. Microsc Microanal 18(4):829

    Article  CAS  Google Scholar 

  • Erşan YÇ, Belie Nd, Boon N (2015) Microbially induced caco3 precipitation through denitrification: an optimization study in minimal nutrient environment. Biochem Eng J 101:108–118. https://doi.org/10.1016/j.bej.2015.05.006

    Article  CAS  Google Scholar 

  • Fang X, Shen C, Chu J, Wu S, Li Y (2015) An experimental study of coral sand enhanced through microbially-induced precipitation of calcium carbonate. Rock Soil Mech 36(10):2773–2779

    Google Scholar 

  • Feng Z, Kang H, Yang J (2005) Discussion on grouting technology for crack rock mass. Coal Sci Technol 4:63–66

    Google Scholar 

  • Ferris F, Stehmeier L, Kantzas A, Mourits F (1997) Bacteriogenic mineral plugging. J Can Pet Technol 36(09)

  • Fragaszy R, Santamarina JC, Amekudzi A, Assimaki D, Bachus R, Burns S, Cha M, Cho G-C, Cortes D, Dai S (2011) Sustainable development and energy geotechnology—potential roles for geotechnical engineering. KSCE J Civ Eng 15(4):611–621

    Article  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418

    Article  CAS  Google Scholar 

  • Fu T, Saracho AC, Haigh SK (2023) Microbially induced carbonate precipitation (micp) for soil strengthening: a comprehensive review. Biogeotechnics 1(1):100002. https://doi.org/10.1016/j.bgtech.2023.100002

    Article  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309(5739):1387–1390

    Article  CAS  Google Scholar 

  • Gao Y, Tang X, Chu J, He J (2019) Microbially induced calcite precipitation for seepage control in sandy soil. Geomicrobiol J 36(4):366–375

    Article  CAS  Google Scholar 

  • Ghasemi P, Montoya BM (2022) Field implementation of microbially induced calcium carbonate precipitation for surface erosion reduction of a coastal plain sandy slope. J Geotech Geoenviron Eng 148(9):04022071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002836

    Article  CAS  Google Scholar 

  • Ghorbanzadeh N, Abduolrahimi S, Forghani A, Farhangi MB (2020) Bioremediation of cadmium in a sandy and a clay soil by microbially induced calcium carbonate precipitation after one week incubation. Arid Land Res Manage 34(3):319–335

    Article  CAS  Google Scholar 

  • Gomez MG, Martinez BC, DeJong JT, Hunt CE, deVlaming LA, Major DW, Dworatzek SM (2015) Field-scale bio-cementation tests to improve sands. Proc Inst Civil Eng Ground Improv 168(3):206–216

    Article  Google Scholar 

  • Gorospe CM, Han S-H, Kim S-G, Park J-Y, Kang C-H, Jeong J-H, So J-S (2013) Effects of different calcium salts on calcium carbonate crystal formation by Sporosarcina pasteurii kctc 3558. Biotechnol Bioprocess Eng 18(5):903–908

    Article  CAS  Google Scholar 

  • Gowthaman S, Iki T, Nakashima K, Ebina K, Kawasaki S (2019) Feasibility study for slope soil stabilization by microbial induced carbonate precipitation (micp) using indigenous bacteria isolated from cold subarctic region. SN Appl Sci 1(11):1480. https://doi.org/10.1007/s42452-019-1508-y

    Article  CAS  Google Scholar 

  • Greer JA (2018) Biofilm enabled permeability reduction in sands. University of California, Davis

    Google Scholar 

  • Hamdan NM (2015) Applications of enzyme induced carbonate precipitation (eicp) for soil improvement. Arizona State University, Tempe

    Google Scholar 

  • Hamdan N, Kavazanjian Jr E, O’donnell S (2013) Carbonate cementation via plant derived urease. In: Proceedings of the 18th international conference on soil mechanics and geotechnical engineering, pp 2–6

  • Hammes F, Verstraete W (2002) Key roles of ph and calcium metabolism in microbial carbonate precipitation. Rev Environ Sci Biotechnol 1(1):3–7

    Article  CAS  Google Scholar 

  • Han Z, Wang T, Dong Z, Hu Y, Yao Z (2007) Chemical stabilization of mobile dunefields along a highway in the taklimakan desert of china. J Arid Environ 68(2):260–270

    Article  Google Scholar 

  • Harkes MP, Van Paassen LA, Booster JL, Whiffin VS, van Loosdrecht MC (2010) Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecol Eng 36(2):112–117

    Article  Google Scholar 

  • Hataf N, Jamali R (2018) Effect of fine-grain percent on soil strength properties improved by biological method. Geomicrobiol J 35(8):695–703. https://doi.org/10.1080/01490451.2018.1454554

    Article  Google Scholar 

  • He J, Chu J (2014) Undrained responses of microbially desaturated sand under monotonic loading. J Geotech Geoenviron Eng 140(5):04014003

    Article  Google Scholar 

  • He J, Chu J, Ivanov V (2013) Mitigation of liquefaction of saturated sand using biogas. Geotechnique 63(4):267–275

    Article  Google Scholar 

  • He J, Chu J, Liu H (2014) Undrained shear strength of desaturated loose sand under monotonic shearing. Soils Found 54(4):910–916

    Article  Google Scholar 

  • Hu Z, Deng Y (2003) Supersaturation control in aragonite synthesis using sparingly soluble calcium sulfate as reactants. J Colloid Interface Sci 266(2):359–365

    Article  CAS  Google Scholar 

  • Hu X, Li D, Peng E, Hou Z, Sheng Y, Chou Y (2020) Long-term sustainability of biogas bubbles in sand. Sci Rep 10(1):1–12

    CAS  Google Scholar 

  • Ismail M, Joer H, Randolph M, Meritt A (2002) Cementation of porous materials using calcite. Geotechnique 52(5):313–324

    Article  Google Scholar 

  • Ivanov V, Chu J (2008) Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev Environ Sci Biotechnol 7(2):139–153

    Article  CAS  Google Scholar 

  • Ivanov V, Stabnikov V, Zhuang W, Tay J, Tay S (2005) Phosphate removal from the returned liquor of municipal wastewater treatment plant using iron-reducing bacteria. J Appl Microbiol 98(5):1152–1161

    Article  CAS  Google Scholar 

  • Ivanov V, Chu J, Stabnikov V, He J, Naeimi M (2010) Iron-based bio-grout for soil improvement and land reclamation. In: Proceedings of the 2nd international conference on sustainable construction materials and technologies, Italy, pp p415–420

  • Ivanov V, Stabnikov V, Stabnikova O, Kawasaki S (2019) Environmental safety and biosafety in construction biotechnology. World J Microbiol Biotechnol 35(2):26

    Article  Google Scholar 

  • Jain S, Mishra PN, Tiwari S, Wang Y, Jiang N, Dash HR, Chang I, Kumar A, Das SK, Scheuermann A, Bore T (2023) Biological perspectives in geotechnics: theoretical developments. Rev Environ Sci Biotechnol 22(4):1093–1130. https://doi.org/10.1007/s11157-023-09671-2

    Article  Google Scholar 

  • Jakubovskis R, Jankutė A, Urbonavičius J, Gribniak V (2020) Analysis of mechanical performance and durability of self-healing biological concrete. Constr Build Mater 260:119822. https://doi.org/10.1016/j.conbuildmat.2020.119822

    Article  Google Scholar 

  • Jiang N-J, Soga K (2017) The applicability of microbially induced calcite precipitation (micp) for internal erosion control in gravel–sand mixtures. Géotechnique 67(1):42–55

    Article  Google Scholar 

  • Jiang N-J, Soga K, Kuo M (2017) Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand–clay mixtures. J Geotech Geoenviron Eng 143(3):04016100

    Article  Google Scholar 

  • Jiang N-J, Tang C-S, Yin L-Y, Xie Y-H, Shi B (2019) Applicability of microbial calcification method for sandy-slope surface erosion control. J Mater Civ Eng 31(11):04019250

    Article  CAS  Google Scholar 

  • Jongvivatsakul P, Janprasit K, Nuaklong P, Pungrasmi W, Likitlersuang S (2019) Investigation of the crack healing performance in mortar using microbially induced calcium carbonate precipitation (micp) method. Constr Build Mater 212:737–744

    Article  CAS  Google Scholar 

  • Jroundi F, Gómez-Suaga P, Jimenez-Lopez C, González-Muñoz MT, Fernandez-Vivas MA (2012) Stone-isolated carbonatogenic bacteria as inoculants in bioconsolidation treatments for historical limestone. Sci Total Environ 425:89–98

    Article  CAS  Google Scholar 

  • Jroundi F, Gonzalez-Muñoz MT, Garcia-Bueno A, Rodriguez-Navarro C (2014) Consolidation of archaeological gypsum plaster by bacterial biomineralization of calcium carbonate. Acta Biomater 10(9):3844–3854

    Article  CAS  Google Scholar 

  • Kang C-H, Oh SJ, Shin Y, Han S-H, Nam I-H, So J-S (2015) Bioremediation of lead by ureolytic bacteria isolated from soil at abandoned metal mines in south korea. Ecol Eng 74:402–407

    Article  Google Scholar 

  • Karatas I (2008) Microbiological improvement of the physical properties of soils. Arizona State University, Tempe

    Google Scholar 

  • Kavazanjian E, Hamdan N (2015) Enzyme induced carbonate precipitation (eicp) columns for ground improvement. Ifcee 2015:2252–2261

    Google Scholar 

  • Kavazanjian Jr E, Karatas I (2008) Microbiological improvement of the physical properties of soil

  • Khaliq W, Ehsan MB (2016) Crack healing in concrete using various bio influenced self-healing techniques. Constr Build Mater 102:349–357

    Article  CAS  Google Scholar 

  • Kim J, Park H-D, Chung S (2012) Microfluidic approaches to bacterial biofilm formation. Molecules 17(8):9818–9834

    Article  CAS  Google Scholar 

  • Kim D, Park K, Kim D (2014) Effects of ground conditions on microbial cementation in soils. Materials 7(1):143–156

    Article  Google Scholar 

  • Kirkland CM, Thane A, Hiebert R, Hyatt R, Kirksey J, Cunningham AB, Gerlach R, Spangler L, Phillips AJ (2020) Addressing wellbore integrity and thief zone permeability using microbially-induced calcium carbonate precipitation (micp): a field demonstration. J Petrol Sci Eng 190:107060

    Article  CAS  Google Scholar 

  • Kitamura M, Konno H, Yasui A, Masuoka H (2002) Controlling factors and mechanism of reactive crystallization of calcium carbonate polymorphs from calcium hydroxide suspensions. J Cryst Growth 236(1–3):323–332

    Article  CAS  Google Scholar 

  • Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jørgensen A, Molin S, Tolker-Nielsen T (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type iv pili mutants. Mol Microbiol 48(6):1511–1524

    Article  CAS  Google Scholar 

  • Kou H-l, Wu C-z, Ni P-p, Jang B-A (2020) Assessment of erosion resistance of biocemented sandy slope subjected to wave actions. Appl Ocean Res 105:102401

    Article  Google Scholar 

  • Krajewska B (2018) Urease-aided calcium carbonate mineralization for engineering applications: a review. J Adv Res 13:59–67

    Article  CAS  Google Scholar 

  • Kralj D, Brečević L, Nielsen AE (1994) Vaterite growth and dissolution in aqueous solution ii. Kinetics of dissolution. J Cryst Growth 143(3–4):269–276

    Article  CAS  Google Scholar 

  • Kumari D, Pan X, Lee D-J, Achal V (2014) Immobilization of cadmium in soil by microbially induced carbonate precipitation with Exiguobacterium undae at low temperature. Int Biodeterior Biodegrad 94:98–102

    Article  CAS  Google Scholar 

  • Kumari D, Qian X-Y, Pan X, Achal V, Li Q, Gadd GM (2016) Microbially-induced carbonate precipitation for immobilization of toxic metals. Adv Appl Microbiol 94:79–108

    Article  CAS  Google Scholar 

  • Kunst F, Rapoport G (1995) Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. J Bacteriol 177(9):2403–2407

    Article  CAS  Google Scholar 

  • Le Metayer-Levrel G, Castanier S, Orial G, Loubiere J-F, Perthuisot J-P (1999) Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sediment Geol 126(1–4):25–34

    Article  Google Scholar 

  • Lecuyer S, Rusconi R, Shen Y, Forsyth A, Vlamakis H, Kolter R, Stone HA (2011) Shear stress increases the residence time of adhesion of Pseudomonas aeruginosa. Biophys J 100(2):341–350

    Article  CAS  Google Scholar 

  • Li H (2011) Classification of deterioration states of historical stone relics and its application. Sci Conserv Archaeol 23(01):1–6

    Google Scholar 

  • Li B (2014) Geotechnical properties of biocement treated soils. Nanyang Technological University, Singapore

    Google Scholar 

  • Li J, Thompson DWJ (2021) Widespread changes in surface temperature persistence under climate change. Nature 599(7885):425–430. https://doi.org/10.1038/s41586-021-03943-z

    Article  CAS  Google Scholar 

  • Li P, Qu W, Xu D, Xiao Y (2009) Remediation of historic marble architectural heritages by bacterially-induced biomineralization. J South China Univ Technol (natural Science Edition) 37(09):36–41

    Google Scholar 

  • Li M, Cheng X, Guo H (2013) Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. Int Biodeterior Biodegrad 76:81–85

    Article  CAS  Google Scholar 

  • Li M, Fu Q-L, Zhang Q, Achal V, Kawasaki S (2015) Bio-grout based on microbially induced sand solidification by means of asparaginase activity. Sci Rep 5(1):1–9

    Google Scholar 

  • Li C, Wang S, Wang Y, Gao Y (2019) Field experimental study on stability of bio-mineralization crust in the desert. Rock Soil Mech 40(4):1291–1298

    Google Scholar 

  • Li S, Li C, Yao D, Wang S (2020) Feasibility of microbially induced carbonate precipitation and straw checkerboard barriers on desertification control and ecological restoration. Ecol Eng 152:105883

    Article  Google Scholar 

  • Lin H, Suleiman MT, Brown DG (2020) Investigation of pore-scale caco3 distributions and their effects on stiffness and permeability of sands treated by microbially induced carbonate precipitation (micp). Soils Found 60:944

    Article  Google Scholar 

  • Liu L, Shen Y, Liu H, Chu J (2016) Application of bio-cement in erosion control of levees. Rock Soil Mech 37(12):3410–3416

    Google Scholar 

  • Liu D, Shao A, Jin C, Yang L (2018a) Healing technique for rock cracks based on microbiologically induced calcium carbonate mineralization. J Mater Civ Eng 30(11):04018286

    Article  Google Scholar 

  • Liu H, Xiao P, Xiao Y, Wang J, Chen Y, Chu J (2018b) Dynamic behaviors of micp-treated calcareous sand in cyclic tests. Chin J Geotech Eng 40(1):38–45

    Google Scholar 

  • Liu H, Xiao P, Xiao Y, Chu J (2019a) State-of-the-art review of biogeotechnology and its engineering applications. J Civ Environ Eng 41(01):1–14

    Google Scholar 

  • Liu J, Xiao L, Xie Z (2019b) Protection of stone cultural relics in china: analysis of nsfc-funded projects. Sci Conserv Archaeol 031(002):112–119

    Google Scholar 

  • Liu L, Liu H, Stuedlein AW, Evans TM, Xiao Y (2019c) Strength, stiffness, and microstructure characteristics of biocemented calcareous sand. Can Geotech J 56(10):1502–1513

    Article  CAS  Google Scholar 

  • Liu S, Wen K, Armwood C, Bu C, Li C, Amini F, Li L (2019d) Enhancement of micp-treated sandy soils against environmental deterioration. J Mater Civ Eng 31(12):04019294

    Article  CAS  Google Scholar 

  • Liu B, Zhu C, Tang C-S, Xie Y-H, Yin L-Y, Cheng Q, Shi B (2020a) Bio-remediation of desiccation cracking in clayey soils through microbially induced calcite precipitation (micp). Eng Geol 264:105389

    Article  Google Scholar 

  • Liu K-W, Jiang N-J, Qin J-D, Wang Y-J, Tang C-S, Han X-L (2020b) An experimental study of mitigating coastal sand dune erosion by microbial-and enzymatic-induced carbonate precipitation. Acta Geotech 16:1–14

    Google Scholar 

  • Liu S, Yu J, Peng X, Cai Y, Tu B (2020c) Preliminary study on repairing tabia cracks by using microbially induced carbonate precipitation. Constr Build Mater 248:118611

    Article  CAS  Google Scholar 

  • Liu S, Yu J, Zeng W, Peng X, Cai Y, Tu B (2020d) Repair effect of tabia cracks with microbially induced carbonate precipitation. Chin J Rock Mech Eng 39(01):191–204

    Google Scholar 

  • Liu H, Chu J, Kavazanjian E (2023) Biogeotechnics: a new frontier in geotechnical engineering for sustainability. Biogeotechnics 1:100001

    Article  Google Scholar 

  • Lovley DR (1991) Dissimilatory fe (iii) and mn (iv) reduction. Microbiol Mol Biol Rev 55(2):259–287

    CAS  Google Scholar 

  • Lu N, Mitchell JK (2019) Geotechnical fundamentals for addressing new world challenges. Springer

    Book  Google Scholar 

  • Lv C, Zhu C, Tang CS, Cheng Q, Yin LY, Shi B (2020) Effect of fiber reinforcement on the mechanical behavior of bio-cemented sand. Geosynth Int (in press)

  • Ma R, Guo H, Cheng X, Liu J (2018) Permeability experiment study of calcareous sand treated by microbially induced carbonate precipitation using mixing methods. Rock Soil Mech 39(S2):217–223

    Google Scholar 

  • Maleki M, Ebrahimi S, Asadzadeh F, Tabrizi ME (2016) Performance of microbial-induced carbonate precipitation on wind erosion control of sandy soil. Int J Environ Sci Technol 13(3):937–944

    Article  Google Scholar 

  • Martinez B, DeJong J, Ginn T, Montoya B, Barkouki T, Hunt C, Tanyu B, Major D (2013) Experimental optimization of microbial-induced carbonate precipitation for soil improvement. J Geotech Geoenviron Eng 139(4):587–598

    Article  CAS  Google Scholar 

  • Meldrum FC, Cölfen H (2008) Controlling mineral morphologies and structures in biological and synthetic systems. Chem Rev 108(11):4332–4432

    Article  CAS  Google Scholar 

  • Meng H, Gao Y, He J, Qi Y, Hang L (2021) Microbially induced carbonate precipitation for wind erosion control of desert soil: field-scale tests. Geoderma 383:114723

    Article  CAS  Google Scholar 

  • Meyer F, Bang S, Min S, Stetler L, Bang S (2011) Microbiologically-induced soil stabilization: application of sporosarcina pasteurii for fugitive dust control. In: Geo-frontiers 2011: advances in geotechnical engineering, pp 4002–4011

  • Mi J, Wang H, Liu J, Yan H (2017) Research and application progress of soil stabilizer. Mater Rep 31(S1):388–391+401

    Google Scholar 

  • Minto JM, MacLachlan E, El Mountassir G, Lunn RJ (2016) Rock fracture grouting with microbially induced carbonate precipitation. Water Resour Res 52(11):8827–8844. https://doi.org/10.1002/2016WR018884

    Article  Google Scholar 

  • Mishra PN, Jain S, Bore T, Chang I, Kwon Y-M, Wang Y, Dash HR, Kumar A, Tiwari S, Jiang N, Das SK, Scheuermann A (2023) Biological perspectives in geotechnics: application and monitoring. J Rock Mech Geotech Eng. https://doi.org/10.1016/j.jrmge.2023.10.007

    Article  Google Scholar 

  • Mitchell JK, Santamarina JC (2005) Biological considerations in geotechnical engineering. J Geotech Geoenviron Eng 131(10):1222–1233

    Article  CAS  Google Scholar 

  • Mitchell AC, Phillips AJ, Hiebert R, Gerlach R, Spangler LH, Cunningham AB (2009) Biofilm enhanced geologic sequestration of supercritical co2. Int J Greenh Gas Control 3(1):90–99

    Article  CAS  Google Scholar 

  • Montoya BM (2012) Bio-mediated soil improvement and the effect of cementation on the behavior, improvement, and performance of sand. University of California, Davis

    Google Scholar 

  • Montoya B, DeJong J (2015) Stress-strain behavior of sands cemented by microbially induced calcite precipitation. J Geotech Geoenviron Eng 141(6):04015019

    Article  Google Scholar 

  • Movahedan M, Abbasi N, Keramati M (2012) Wind erosion control of soils using polymeric materials. Euras J Soil Sci 2:81–86

    Google Scholar 

  • Moyo C, Kissel D, Cabrera M (1989) Temperature effects on soil urease activity. Soil Biol Biochem 21(7):935–938

    Article  CAS  Google Scholar 

  • Mugwar AJ, Harbottle MJ (2016) Toxicity effects on metal sequestration by microbially-induced carbonate precipitation. J Hazard Mater 314:237–248

    Article  CAS  Google Scholar 

  • Mujah D, Shahin MA, Cheng L (2017) State-of-the-art review of biocementation by microbially induced calcite precipitation (micp) for soil stabilization. Geomicrobiol J 34(6):524–537

    Article  CAS  Google Scholar 

  • Naeimi M, Chu J (2017) Comparison of conventional and bio-treated methods as dust suppressants. Environ Sci Pollut Res 24(29):23341–23350

    Article  CAS  Google Scholar 

  • Naeimi M, Haddad A (2020) Environmental impacts of chemical and microbial grouting. Environ Sci Pollut Res 27(2):2264–2272

    Article  CAS  Google Scholar 

  • Nafisi A, Khoubani A, Montoya BM, Evans M (2018) The effect of grain size and shape on mechanical behavior of micp sand i: experimental study. In: Proceedings of the 11th National Conf. in Earthquake Eng., Earthquake Eng. Research Ins. Los Angeles

  • Nain N, Surabhi R, Yathish N, Krishnamurthy V, Deepa T, Tharannum S (2019) Enhancement in strength parameters of concrete by application of bacillus bacteria. Constr Build Mater 202:904–908

    Article  CAS  Google Scholar 

  • Naveed M, Duan J, Uddin S, Suleman M, Hui Y, Li H (2020) Application of microbially induced calcium carbonate precipitation with urea hydrolysis to improve the mechanical properties of soil. Ecol Eng. https://doi.org/10.1016/j.ecoleng.2020.105885

    Article  Google Scholar 

  • Nielsen PH, Jahn A, Palmgren R (1997) Conceptual model for production and composition of exopolymers in biofilms. Water Sci Technol 36(1):11–19

    Article  CAS  Google Scholar 

  • O’Donnell ST, Rittmann BE, Kavazanjian E Jr (2017) Midp: liquefaction mitigation via microbial denitrification as a two-stage process. I: Desaturation. J Geotech Geoenviron Eng 143(12):04017094

    Article  Google Scholar 

  • O’Donnell ST, Rittmann BE, Kavazanjian E Jr (2019) Factors controlling microbially induced desaturation and precipitation (midp) via denitrification during continuous flow. Geomicrobiol J 36(6):543–558

    Article  Google Scholar 

  • Okamura M, Soga Y (2006) Effects of pore fluid compressibility on liquefaction resistance of partially saturated sand. Soils Found 46(5):695–700

    Article  Google Scholar 

  • Okamura M, Takebayashi M, Nishida K, Fujii N, Jinguji M, Imasato T, Yasuhara H, Nakagawa E (2011) In-situ desaturation test by air injection and its evaluation through field monitoring and multiphase flow simulation. J Geotech Geoenviron Eng 137(7):643–652

    Article  Google Scholar 

  • Okwadha GD, Li J (2010) Optimum conditions for microbial carbonate precipitation. Chemosphere 81(9):1143–1148

    Article  CAS  Google Scholar 

  • Orial G, Marie-Victoire E (1997) Fabrication de carbonate de calcium par voie biologique: La carbonatogenese. In: Proceedings of international seminar on deterioration of concrete and natural stone of historical monuments, pp 59–76

  • Ou Y, Fang X, Zhang N, Li J (2016) Influence of solution salinity on microbial biocementation of coral sand. J Log Eng Univ 32(1):78–82

    Google Scholar 

  • Peng J, Tian Y, Yang J (2019a) Experiments of coral sand reinforcement using micp in seawater environment. Adv Sci Technol Water Resour 39(1):58–62

    Google Scholar 

  • Peng S, Zhang K, Kang J, Fan L, Wang F (2019b) Experimental study on microbial impermeability mechanism of fractured rock mass. J Yangtze River Sci Res Inst 2020:1–8

    Google Scholar 

  • Peng S, Di H, Fan L, Fan W, Qin L (2020) Factors affecting permeability reduction of micp for fractured rock. Front Earth Sci 8:217

    Article  Google Scholar 

  • Perkins S, Gyr P, James G (2000) The influence of biofilm on the mechanical behavior of sand. Geotech Test J 23(3):300–312

    Article  Google Scholar 

  • Pham P (2017) Bio-based ground improvement through microbial induced desaturation and precipitation (midp)

  • Pham VP, Nakano A, Van Der Star WR, Heimovaara TJ, Van Paassen LA (2016) Applying micp by denitrification in soils: a process analysis. Environ Geotech 5(2):79–93

    Article  Google Scholar 

  • Pham VP, van Paassen LA, van der Star WR, Heimovaara TJ (2018) Evaluating strategies to improve process efficiency of denitrification-based micp. J Geotech Geoenviron Eng 144(8):04018049

    Article  Google Scholar 

  • Phillips AJ (2013) Biofilm-induced calcium carbonate precipitation: application in the subsurface. Montana State University-Bozeman, College of Engineering

  • Phillips AJ, Lauchnor E, Eldring J, Esposito R, Mitchell AC, Gerlach R, Cunningham AB, Spangler LH (2013) Potential co2 leakage reduction through biofilm-induced calcium carbonate precipitation. Environ Sci Technol 47(1):142–149

    Article  CAS  Google Scholar 

  • Phillips AJ, Cunningham AB, Gerlach R, Hiebert R, Hwang C, Lomans BP, Westrich J, Mantilla C, Kirksey J, Esposito R (2016) Fracture sealing with microbially-induced calcium carbonate precipitation: a field study. Environ Sci Technol 50(7):4111–4117

    Article  CAS  Google Scholar 

  • Phillips AJ, Troyer E, Hiebert R, Kirkland C, Gerlach R, Cunningham AB, Spangler L, Kirksey J, Rowe W, Esposito R (2018) Enhancing wellbore cement integrity with microbially induced calcite precipitation (micp): a field scale demonstration. J Petrol Sci Eng 171:1141–1148

    Article  CAS  Google Scholar 

  • Pietruszczak S, Pande G, Oulapour M (2003) A hypothesis for mitigation of risk of liquefaction. Geotechnique 53(9):833–838

    Article  Google Scholar 

  • Portugal CRME, Fonyo C, Machado CC, Meganck R, Jarvis T (2020) Microbiologically induced calcite precipitation biocementation, green alternative for roads—is this the breakthrough? A critical review. J Clean Prod:121372.

  • Prasad CRV, Reddy PHP, Murthy VR, Sivapullaiah P (2018) Swelling characteristics of soils subjected to acid contamination. Soils Found 58(1):110–121

    Article  Google Scholar 

  • Proto C, DeJong J, Nelson D (2016) Biomediated permeability reduction of saturated sands. J Geotech Geoenviron Eng 142(12):04016073

    Article  Google Scholar 

  • Pungrasmi W, Intarasoontron J, Jongvivatsakul P, Likitlersuang S (2019) Evaluation of microencapsulation techniques for micp bacterial spores applied in self-healing concrete. Sci Rep 9(1):1–10

    Article  CAS  Google Scholar 

  • Qian C, Li R, Pan Q, Luo M, Rong H (2013) Microbial self-healing effects of concrete cracks. J Southeast Univ (natural Science Edition) 43(2):360–364

    Google Scholar 

  • Qian C, Wang R, Zhan Q (2015) Fundamentals of engineering applications of microbial mineralization. Science Press, Beijing

    Google Scholar 

  • Qian X, Fang C, Huang M, Achal V (2017) Characterization of fungal-mediated carbonate precipitation in the biomineralization of chromate and lead from an aqueous solution and soil. J Clean Prod 164:198–208

    Article  CAS  Google Scholar 

  • Rahman MM, Hora RN, Ahenkorah I, Beecham S, Karim MR, Iqbal A (2020) State-of-the-art review of microbial-induced calcite precipitation and its sustainability in engineering applications. Sustainability 12(15):6281

    Article  Google Scholar 

  • Rajasekar A, Wilkinson S, Moy CKS (2021) Micp as a potential sustainable technique to treat or entrap contaminants in the natural environment: a review. Environ Sci Ecotechnol 6:100096. https://doi.org/10.1016/j.ese.2021.100096

    Article  CAS  Google Scholar 

  • Ranalli G, Matteini M, Tosini I, Zanardini E, Sorlini C (2000) Bioremediation of cultural heritage: removal of sulphates, nitrates and organic substances. In: Ciferri O, Tiano P, Mastromei G (eds) Of microbes and art: the role of microbial communities in the degradation and protection of cultural heritage. Springer, Boston, pp 231–245. https://doi.org/10.1007/978-1-4615-4239-1_16

    Chapter  Google Scholar 

  • Raymond AJ, Kendall A, DeJong JT (2020) Life cycle sustainability assessment (lcsa): A research evaluation tool for emerging geotechnologies. Geo-Congress 2020: Biogeotechnics. American Society of Civil Engineers, Reston, pp 330–339

    Chapter  Google Scholar 

  • Rebata-Landa V (2007) Microbial activity in sediments: effects on soil behavior. Georgia Institute of Technology

  • Rebata‐Landa V, Santamarina JC (2006) Mechanical limits to microbial activity in deep sediments. Geochem Geophys Geosyst 7(11)

  • Rebata-Landa V, Santamarina JC (2012) Mechanical effects of biogenic nitrogen gas bubbles in soils. J Geotech Geoenviron Eng 138(2):128–137

    Article  CAS  Google Scholar 

  • Reddy SV, Satya AK, Rao SM, Azmatunnisa M (2012) A biological approach to enhance strength and durability in concrete structures. Int J Adv Eng Technol 4(2):392

    Google Scholar 

  • Rickard AH, Gilbert P, High NJ, Kolenbrander PE, Handley PS (2003) Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol 11(2):94–100

    Article  CAS  Google Scholar 

  • Roden EE, Leonardo MR, Ferris FG (2002) Immobilization of strontium during iron biomineralization coupled to dissimilatory hydrous ferric oxide reduction. Geochim Cosmochim Acta 66(16):2823–2839

    Article  CAS  Google Scholar 

  • Rodriguez-Navarro C, Rodriguez-Gallego M, Chekroun KB, Gonzalez-Munoz MT (2003) Conservation of ornamental stone by myxococcus xanthus-induced carbonate biomineralization. Appl Environ Microbiol 69(4):2182–2193

    Article  CAS  Google Scholar 

  • Roh Y, Gao H, Vali H, Kennedy DW, Yang ZK, Gao W, Dohnalkova AC, Stapleton RD, Moon J-W, Phelps TJ (2006) Metal reduction and iron biomineralization by a psychrotolerant fe (iii)-reducing bacterium, Shewanella sp. Strain pv-4. Appl Environ Microbiol 72(5):3236–3244

    Article  CAS  Google Scholar 

  • Roth MJ, Caslake LF (2019) Reducing soil permeability using in situ biofilm-forming bacteria: overcoming testing apparatus challenges. Geo-congress 2019: soil improvement. American Society of Civil Engineers, Reston, pp 187–195

    Chapter  Google Scholar 

  • Rowshanbakht K, Khamehchiyan M, Sajedi RH, Nikudel MR (2016) Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment. Ecol Eng 89:49–55

    Article  Google Scholar 

  • Saif A, Cuccurullo A, Gallipoli D, Perlot C, Bruno AW (2022) Advances in enzyme induced carbonate precipitation and application to soil improvement: a review. Materials 15(3):950

    Article  CAS  Google Scholar 

  • Salifu E, MacLachlan E, Iyer KR, Knapp CW, Tarantino A (2016) Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: a preliminary investigation. Eng Geol 201:96–105

    Article  Google Scholar 

  • Sani J, Moses G, Oriola F (2020) Evaluating the electrical resistivity of microbial-induced calcite precipitate-treated lateritic soil. SN Appl Sci 2(9):1–12

    Article  Google Scholar 

  • Saracho AC, Haigh SK, Hata T, Soga K, Farsang S, Redfern SA, Marek E (2020) Characterisation of caco 3 phases during strain-specific ureolytic precipitation. Sci Rep 10(1):1–12

    Google Scholar 

  • Seagren EA, Aydilek AH (2010) Biomediated geomechanical processes. Environ Microbiol:319–348.

  • Seifan M, Berenjian A (2019) Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world. Appl Microbiol Biotechnol 103(12):4693–4708. https://doi.org/10.1007/s00253-019-09861-5

    Article  CAS  Google Scholar 

  • Shanahan C, Montoya B (2014) Strengthening coastal sand dunes using microbial-induced calcite precipitation. In: Geo-congress 2014: geo-characterization and modeling for sustainability, pp 1683–1692

  • Shao G, Feng J, Zhao Z, Liu P, Li Z, Zhou N (2017) Influence factor analysis related to strength and anti-erosion stability of silt slope with microbial mortar protective covering. Trans Chin Soc Agric Eng 33(11):133–139

    Google Scholar 

  • Sharma A, Ramkrishnan R (2016) Study on effect of microbial induced calcite precipitates on strength of fine grained soils. Perspect Sci 8:198–202

    Article  Google Scholar 

  • Sharma M, Satyam N (2021) Strength and durability of biocemented sands: wetting-drying cycles, ageing effects, and liquefaction resistance. Geoderma 402:115359. https://doi.org/10.1016/j.geoderma.2021.115359

    Article  CAS  Google Scholar 

  • Sharma M, Satyam N, Reddy KR (2021) Rock-like behavior of biocemented sand treated under non-sterile environment and various treatment conditions. J Rock Mech Geotech Eng 13(3):705–716. https://doi.org/10.1016/j.jrmge.2020.11.006

    Article  Google Scholar 

  • Sharma M, Satyam N, Reddy KR (2022) Large-scale spatial characterization and liquefaction resistance of sand by hybrid bacteria induced biocementation. Eng Geol 302:106635. https://doi.org/10.1016/j.enggeo.2022.106635

    Article  Google Scholar 

  • Shaw JC, Bramhill B, Wardlaw N, Costerton J (1985) Bacterial fouling in a model core system. Appl Environ Microbiol 49(3):693–701

    Article  CAS  Google Scholar 

  • Smith K (2013) Environmental hazards: assessing risk and reducing disaster. Routledge, London

    Book  Google Scholar 

  • Song C, Elsworth D (2018) Strengthening mylonitized soft-coal reservoirs by microbial mineralization. Int J Coal Geol 200:166–172

    Article  CAS  Google Scholar 

  • Song C, Elsworth D (2020) Microbially induced calcium carbonate plugging for enhanced oil recovery. Geofluids 11:1–10

    Google Scholar 

  • Soon NW, Lee LM, Khun TC, Ling HS (2013) Improvements in engineering properties of soils through microbial-induced calcite precipitation. KSCE J Civ Eng 17(4):718–728

    Article  Google Scholar 

  • Soon NW, Lee LM, Khun TC, Ling HS (2014) Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation. J Geotech Geoenviron Eng 140(5):04014006

    Article  Google Scholar 

  • Srivastava PK, Kayastha AM (2001) Characterization of gelatin-immobilized pigeonpea urease and preparation of a new urea biosensor. Biotechnol Appl Biochem 34(1):55–62

    Article  CAS  Google Scholar 

  • Sruthi PL, Reddy PHP, Moghal AAB (2022) Swelling behavior of alkali transformed kaolinitic clays treated with flyash and ground granulated blast furnace slag. Indian Geotech J 52(1):145–160

    Article  Google Scholar 

  • Stabnikov V, Jian C, Ivanov V, Li Y (2013) Halotolerant, alkaliphilic urease-producing bacteria from different climate zones and their application for biocementation of sand. World J Microbiol Biotechnol 29(8):1453–1460

    Article  CAS  Google Scholar 

  • Stabnikov V, Ivanov V, Chu J (2016) Sealing of sand using spraying and percolating biogrouts for the construction of model aquaculture pond in arid desert. Int Aquat Res 8(3):207–216

    Article  Google Scholar 

  • Stocks-Fischer S, Galinat JK, Bang SS (1999) Microbiological precipitation of caco3. Soil Biol Biochem 31(11):1563–1571

    Article  CAS  Google Scholar 

  • Suliman MF, Sarsam SI (2018) Behavior of bacterial concrete under freezing and thawing cycles. J Adv Civ Eng Construct Mater 1(1):40–50

    Google Scholar 

  • Sun M (2007) Research status and development of the conservation of earth sites. Sci Conserv Archaeol 4:64–70

    Google Scholar 

  • Sun X, Miao L, Wu L (2020a) Applicability and theoretical calculation of enzymatic calcium carbonate precipitation for sand improvement. Geomicrobiol J 37(4):389–399

    Article  CAS  Google Scholar 

  • Sun X, Miao L, Wu L, Wang C, Chen R (2020b) The method of repairing microcracks based on microbiologically induced calcium carbonate precipitation. Adv Cem Res 32(6):262–272

    Article  Google Scholar 

  • Sun X, Miao L, Wang H, Yin W, Wu L (2021) Mineralization crust field experiment for desert sand solidification based on enzymatic calcification. J Environ Manage 287:112315

    Article  CAS  Google Scholar 

  • Tan Q (2017) Research on marble relics repairment by microbially induced carbonate precipitation technology. Tsinghua University, Beijing

    Google Scholar 

  • Tang C-S, Yin L-y, Jiang N-j, Zhu C, Zeng H, Li H, Shi B (2020) Factors affecting the performance of microbial-induced carbonate precipitation (micp) treated soil: a review. Environ Earth Sci 79(5):1–23

    Article  Google Scholar 

  • Tang C, Pan X, Lv C, Dong Z, Liu B, Wang D, Li H, Cheng Y, Bin S (2021) Bio-geoengineering technology and the applications. Geol J China Univ 27(6):625–654. https://doi.org/10.16108/j.issn1006-7493.2021011

    Article  CAS  Google Scholar 

  • Terzis D, Laloui L (2019) A decade of progress and turning points in the understanding of bio-improved soils: a review. Geomech Energy Environ. https://doi.org/10.1016/j.gete.2019.03.001

    Article  Google Scholar 

  • Tiano P, Biagiotti L, Mastromei G (1999) Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation. J Microbiol Methods 36(1–2):139–145

    Article  CAS  Google Scholar 

  • Tiano P, Cantisani E, Sutherland I, Paget J (2006) Biomediated reinforcement of weathered calcareous stones. J Cult Heritage 7(1):49–55

    Article  Google Scholar 

  • Tobler DJ, Minto JM, El Mountassir G, Lunn RJ, Phoenix VR (2018) Microscale analysis of fractured rock sealed with microbially induced caco3 precipitation: Influence on hydraulic and mechanical performance. Water Resour Res 54(10):8295–8308

    Article  CAS  Google Scholar 

  • Torres-Aravena ÁE, Duarte-Nass C, Azócar L, Mella-Herrera R, Rivas M, Jeison D (2018) Can microbially induced calcite precipitation (micp) through a ureolytic pathway be successfully applied for removing heavy metals from wastewaters? Crystals 8(11):438

    Article  Google Scholar 

  • Tourney J, Ngwenya BT (2009) Bacterial extracellular polymeric substances (eps) mediate caco3 morphology and polymorphism. Chem Geol 262(3–4):138–146

    Article  CAS  Google Scholar 

  • Vail M, Zhu C, Tang C-S, Anderson L, Moroski M, Montalbo-Lomboy MT (2019) Desiccation cracking behavior of micp-treated bentonite. Geosciences 9(9):385

    Article  CAS  Google Scholar 

  • Vail M, Zhu C, Tang C-S, Maute N, Montalbo-Lomboy MT (2020) Desiccation cracking behavior of clayey soils treated with biocement and bottom ash admixture during wetting–drying cycles. Transp Res Rec:0361198120924409

  • Van Paassen L, Harkes M, Van Zwieten G, Van der Zon W, Van der Star W, Van Loosdrecht M (2009) Scale up of biogrout: a biological ground reinforcement method. In: Proceedings of the 17th international conference on soil mechanics and geotechnical engineering. IOS Press, Lansdale, PA, pp 2328–2333

  • Van Paassen LA, Daza CM, Staal M, Sorokin DY, van der Zon W, van Loosdrecht MC (2010a) Potential soil reinforcement by biological denitrification. Ecol Eng 36(2):168–175

    Article  Google Scholar 

  • Van Paassen LA, Ghose R, van der Linden TJ, van der Star WR, van Loosdrecht MC (2010b) Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment. J Geotech Geoenviron Eng 136(12):1721–1728

    Article  Google Scholar 

  • Van Paassen LA, Pham V, Mahabadi N, Hall C, Stallings E, Kavazanjian E Jr (2017) Desaturation via biogenic gas formation as a ground improvement technique. Panam Unsatur Soils 2017:244–256

    Google Scholar 

  • Veerachamy S, Yarlagadda T, Manivasagam G, Yarlagadda PK (2014) Bacterial adherence and biofilm formation on medical implants: a review. Proc Inst Mech Eng Part H J Eng Med 228(10):1083–1099

    Article  Google Scholar 

  • Vydehi KV, Moghal AAB (2022) Effect of biopolymeric stabilization on the strength and compressibility characteristics of cohesive soil. J Mater Civ Eng 34(2):04021428

    Article  CAS  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27(2):195–226

    Article  Google Scholar 

  • Wang R, Qian C (2008) Restoration of defects on the surface of cement-based materials by microbiologically precipitated caco3. J Chin Ceram Soc 4:457–464

    Google Scholar 

  • Wang X-Z, Jiao Y-Y, Wang R, Hu M-J, Meng Q-S, Tan F-Y (2011) Engineering characteristics of the calcareous sand in Nansha islands, south china sea. Eng Geol 120(1):40–47. https://doi.org/10.1016/j.enggeo.2011.03.011

    Article  Google Scholar 

  • Wang J-Y, De Belie N, Verstraete W (2012) Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. J Ind Microbiol Biotechnol 39(4):567–577

    Article  CAS  Google Scholar 

  • Wang J, Ersan YC, Boon N, De Belie N (2016) Application of microorganisms in concrete: a promising sustainable strategy to improve concrete durability. Appl Microbiol Biotechnol 100(7):2993–3007

    Article  CAS  Google Scholar 

  • Wang Y, Liu H, Zhang Z, Xiao P, He X, Xiao Y (2018a) Study on low-strength biocemented sands using a temperature-controlled micp (microbially induced calcite precipitation) method. Civil infrastructures confronting severe weathers and climate changes conference. Springer, Berlin, pp 15–26

    Google Scholar 

  • Wang Z, Zhang N, Ding J, Lu C, Jin Y (2018b) Experimental study on wind erosion resistance and strength of sands treated with microbial-induced calcium carbonate precipitation. Adv Mater Sci Eng 2018

  • Wani KS, Mir B (2021a) A laboratory-scale study on the bio-cementation potential of distinct river sediments infused with microbes. Transp Infrastruct Geotechnol 8(1):162–185

    Article  Google Scholar 

  • Wani KS, Mir B (2021b) An experimental study on the bio-cementation and bio-clogging effect of bacteria in improving weak dredged soils. Geotech Geol Eng 39:317–334

    Article  Google Scholar 

  • Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85(4):849–860

    Article  CAS  Google Scholar 

  • Wen K, Li Y, Amini F, Li L (2020) Impact of bacteria and urease concentration on precipitation kinetics and crystal morphology of calcium carbonate. Acta Geotech 15(1):17–27. https://doi.org/10.1007/s11440-019-00899-3

    Article  Google Scholar 

  • Whiffin VS (2004) Microbial caco3 precipitation for the production of biocement. Murdoch University, Perth

    Google Scholar 

  • Whiffin VS, Van Paassen LA, Harkes MP (2007) Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol J 24(5):417–423

    Article  CAS  Google Scholar 

  • Whitaker J (2016) Assessing recombinant expression of urease enzyme from sporosarcina ureae as a carbonatogenic method for strength enhancement of loose, sandy soils. Université d’Ottawa/University of Ottawa, Ottawa

    Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci 95(12):6578–6583

    Article  CAS  Google Scholar 

  • Wiktor V, Jonkers HM (2011) Quantification of crack-healing in novel bacteria-based self-healing concrete. Cem Concr Compos 33(7):763–770

    Article  CAS  Google Scholar 

  • Won J, Jeong B, Lee J, Dai S, Burns SE (2020) Facilitation of microbially induced calcite precipitation with kaolinite nucleation. Géotechnique 71:1–7

    Google Scholar 

  • Woolley MA, Van Paassen L, Kavazanjian E Jr (2020) Impact on surface hydraulic conductivity of eicp treatment for fugitive dust mitigation. Geo-congress 2020: biogeotechnics. American Society of Civil Engineers, Reston, pp 132–140

    Chapter  Google Scholar 

  • Wu C, Chu J, Wu S, Guo W (2019) Quantifying the permeability reduction of biogrouted rock fracture. Rock Mech Rock Eng 52(3):947–954

    Article  Google Scholar 

  • Wu C, Chu J, Wu S (2020) Biogrouting of rock joints. Geo-congress 2020: biogeotechnics. American Society of Civil Engineers, Reston, pp 1–8

    Google Scholar 

  • Xiao P, Liu H, Stuedlein AW, Evans TM, Xiao Y (2019) Effect of relative density and biocementation on cyclic response of calcareous sand. Can Geotech J 56(12):1849–1862. https://doi.org/10.1139/cgj-2018-0573

    Article  CAS  Google Scholar 

  • Xiao Y, Wang Y, Wang S, Evans TM, Stuedlein AW, Chu J, Zhao C, Wu H, Liu H (2021a) Homogeneity and mechanical behaviors of sands improved by a temperature-controlled one-phase micp method. Acta Geotech 16(5):1417–1427. https://doi.org/10.1007/s11440-020-01122-4

    Article  Google Scholar 

  • Xiao Y, Wang Y, Wang S, Evans TM, Stuedlein AW, Chu J, Zhao C, Wu H, Liu H (2021b) Homogeneity and mechanical behaviors of sands improved by a temperature-controlled one-phase micp method. Acta Geotech 16:1–11

    Article  CAS  Google Scholar 

  • Xiao Y, Zhou W, Shi J, Lu H, Zhang Z (2022) Erosion of biotreated field-scale slopes under rainfalls. J Perform Constr Facil 36(3):04022030. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001732

    Article  Google Scholar 

  • Xu J, Heeraman D, Wang Y (1993) Fertilizer and temperature effects on urea hydrolysis in undisturbed soil. Biol Fertil Soils 16(1):63–65

    Article  CAS  Google Scholar 

  • Xu X, Guo H, Cheng X, Li M (2020) The promotion of magnesium ions on aragonite precipitation in micp process. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.120057

    Article  Google Scholar 

  • Yang P, O’Donnell S, Hamdan N, Kavazanjian E, Neithalath N (2017) 3d dem simulations of drained triaxial compression of sand strengthened using microbially induced carbonate precipitation. Int J Geomech 17(6):04016143

    Article  Google Scholar 

  • Yang Y, Chu J, Xiao Y, Liu H, Cheng L (2019) Seepage control in sand using bioslurry. Constr Build Mater 212:342–349

    Article  CAS  Google Scholar 

  • Yang Y, Chu J, Cao B, Liu H, Cheng L (2020a) Biocementation of soil using non-sterile enriched urease-producing bacteria from activated sludge. J Clean Prod 262:121315

    Article  CAS  Google Scholar 

  • Yang Y, Ruan S, Wu S, Chu J, Unluer C, Liu H, Cheng L (2020b) Biocarbonation of reactive magnesia for soil improvement. Acta Geotech 16:1–13

    CAS  Google Scholar 

  • Yasuhara H, Neupane D, Hayashi K, Okamura M (2012) Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation. Soils Found 52(3):539–549

    Article  Google Scholar 

  • Yegian M, Eseller-Bayat E, Alshawabkeh A, Ali S (2007) Induced-partial saturation for liquefaction mitigation: Experimental investigation. J Geotech Geoenviron Eng 133(4):372–380

    Article  Google Scholar 

  • Yin L, Tang C, Xie Y, Lv C, Jiang N, Shi B (2019) Factors affecting improvement in engineering properties of geomaterials by microbial-induced calcite precipitation. Rock Soil Mech 40(07):2525–2546

    Google Scholar 

  • Yu X (2017) A case study on the ruins of the city wall and its influencing factors—take suijing ruins as an example. Study Nat Cult Heritage 5:183–185

    Google Scholar 

  • Yu T, Souli H, Péchaud Y, Fleureau J-M (2020) Optimizing protocols for microbial induced calcite precipitation (micp) for soil improvement—a review. Eur J Environ Civ Eng 26:1–16

    Google Scholar 

  • Zachara JM, Kukkadapu RK, Fredrickson JK, Gorby YA, Smith SC (2002) Biomineralization of poorly crystalline fe (iii) oxides by dissimilatory metal reducing bacteria (dmrb). Geomicrobiol J 19(2):179–207

    Article  CAS  Google Scholar 

  • Zamani A, Montoya BM, Gabr MA (2019) Investigating challenges of in situ delivery of microbial-induced calcium carbonate precipitation (micp) in fine-grain sands and silty sand. Can Geotech J 56(12):1889–1900

    Article  Google Scholar 

  • Zehner JS, Røyne A, Sikorski P (2020) Experimental study of microbial induced carbonate precipitation (micp) in the presence of caco3 seeds. bioRxiv. https://doi.org/10.1101/2020.07.17.206516

    Article  Google Scholar 

  • Zhang Y (2014) Research on sand cementation and concrete cracks repairment by microbially induced carbonate precipitation technology. Tsinghua University, Beijing

    Google Scholar 

  • Zhang Y, Guo H, Cheng X (2014) Influences of calcium sources on microbially induced carbonate precipitation in porous media. Mater Res Innov 18(sup2):S2-79-S72-84

    Article  Google Scholar 

  • Zhang Y, Wu F, Su M, He D, Ma W, Wang W, Feng H (2019) Research progress on the bioweathering and controlling of stone cultural relics. Chin J Appl Ecol 30(11):3980–3990

    Google Scholar 

  • Zhao H, Li Z, Han W, Wang X, Chen W (2003) Main diseases and their causes of earthen ruins in arid region of northwestern china. Chin J Rock Mech Eng S2:2875–2880

    Google Scholar 

  • Zhao Q, Li L, Li C, Li M, Amini F, Zhang H (2014) Factors affecting improvement of engineering properties of micp-treated soil catalyzed by bacteria and urease. J Mater Civ Eng 26(12):04014094

    Article  Google Scholar 

  • Zhao Y, Yao J, Yuan Z, Wang T, Zhang Y, Wang F (2017) Bioremediation of cd by strain gz-22 isolated from mine soil based on biosorption and microbially induced carbonate precipitation. Environ Sci Pollut Res 24(1):372–380

    Article  CAS  Google Scholar 

  • Zhao L (2015) Production of ammonium sulfate fertilizer using acid spray wet scrubbers. Agric Eng Int CIGR J

  • Zheng H-m, Wu L-l, Tong K-w, Hu L, Yu Q, He G-c, Zhang Z-j (2020) Experimental study on micp aqueous solution under the action of different organic substrates. Geofluids 2020:1–1

    Google Scholar 

  • Zhong L, Islam M (1995) A new microbial plugging process and its impact on fracture remediation. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers

  • Zhou H, Hou X, Cheng J, Yue G (1985) Study on the role of vegetative cover in preventing soil erosion. Soil Water Conserv China 12(33–37):66–67

    Google Scholar 

  • Zhu W (2011) Fundamental studies of calcium carbonate mineralization microbiologically in stone induced by materials surface protection. Southwest University of Science and Technology, Mianyang

    Google Scholar 

  • Zhu T, Dittrich M (2016) Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Front Bioeng Biotechnol 4:4. https://doi.org/10.3389/fbioe.2016.00004

    Article  Google Scholar 

  • Zhu J, Zhou Y, Wang D, Zhang J (2019) Affecting factors for calcareous sand reinforcement based on microbial induced mineralization. Bull Geol Sci Technol 38(06):206–211

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 41925012, 42230710, 42007244, 41902271), National Key Research and Development Program of China (Grant no. 2023YFC3707900), Key task project for joint research and development of the Yangtze River Delta Science and Technology Innovation Community (Grant no. 2022CSJGG1200), Natural Science Foundation of Jiangsu Province (Grant no. BK20211087), National Key Research and Development Program of China (2020YFC1808000), and Open Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Grant no. SKLGP2021K013).

Author information

Authors and Affiliations

Authors

Contributions

DZH: Data curation, Software, Visualization, Writing—original draft. PXH: Validation, Investigation, Writing—review and editing. ZC: Validation, Investigation, Writing—review and editing. TCS: Conceptualization, Methodology, Writing—review and editing, Funding acquisition, Project administration, Supervision. LC: Data curation, Writing—editing. LB: Data curation, Writing—editing. WDL: Data curation, Writing—editing. LH: Data curation, Writing—editing. CYJ: Data curation, Writing—editing. SB: Project administration.

Corresponding author

Correspondence to Chao-Sheng Tang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, ZH., Pan, XH., Zhu, C. et al. Bio-mediated geotechnology and its application in geoengineering: mechanism, approach, and performance. Environ Earth Sci 83, 348 (2024). https://doi.org/10.1007/s12665-024-11668-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-024-11668-1

Keywords

Navigation