Skip to main content
Log in

Monitoring the dynamics of the Danube islands system, using SAR imagery (Orșova–Vedea sector, 1992–2022)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The Danube and its islands play a pivotal role in maintaining the ecosystem balance in the region. Anthropogenic activities over the past century, combined with extreme natural events, such as floods, interact in synergy and can significantly influence the dynamics of the islands. This includes the appearance or disappearance of islands, changes in their surface area, length, shape, number, and so forth. The objective of this work is to catalogue, study, and monitor the evolution of islands within a 445.29 km stretch of the Lower Danube River, between Orşova and Vedea. These are two Romanian localities situated at the confluence with the Cerna and Vedea rivers, respectively. For this study, we utilized SAR (Synthetic Aperture Radar) images captured on various dates to identify the existing islands. After mapping each island and sub-island, we calculated their respective morphometric parameters and compared them. The results reveal a decrease of 12 islands and/or sub-islands, resulting in a total of 74 islands identified in 2022 with a combined area of 147.63 km2, in contrast to 86 in 1992 with a total area of 154.29 km2. Over this 30-year span, we have estimated an average reduction rate of approximately 0.22 km2/year, with an annual “de-sedimentation” rate of around 0.14%. This accelerated dynamic stems from extreme meteorological events, exacerbated by human activities, amplifying the hydromorphological processes—especially in areas sensitive to water level variations, slope fluctuations, and “de-sedimentation”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Source: (Ioana-Toroimac 2014)

Similar content being viewed by others

Data availability

All data produced from this study are provided in this manuscript.

Code availability

NA.

References

  • Armaș I, Ionescu R, Posner CN (2015) Flood risk perception along the Lower Danube river, Romania. Nat Hazards 79(3):1913–1931. https://doi.org/10.1007/s11069-015-1939-8

    Article  Google Scholar 

  • Beechie TJ, Liermann M, Pollock MM, Baker S, Davies J (2006) Channel pattern and river-floodplain dynamics in forested mountain river systems. Geomorphology 78(1–2):124–141. https://doi.org/10.1016/j.geomorph.2006.01.030

    Article  Google Scholar 

  • Braatne JH, Rood SB, Simons RK, Gom LA, Canali GE (2003) Ecology of riparian vegetation of the Hells Canyon corridor of the Snake River: field data, analysis and modeling of plant responses to inundation and regulated flows. Tech Rep Append E 3:3–3

    Google Scholar 

  • Bran M (2006) Les Roumains fuient leurs villages dévastés par les crues du Danube. Le Monde.fr. https://www.lemonde.fr/europe/article/2006/04/22/les-roumains-fuient-leurs-villages-devastes-par-les-crues-du-danube_764283_3214.html

  • Chelu A, Falkowski T, Brach M (2018) Morphological dynamics of the islands on the Lower Danube River in the Călărași-Cernavodă sector and GIS error assessment. Riscuri Și Catastrofe 23(2):51–70. https://doi.org/10.24193/RCJ2018_15

    Article  Google Scholar 

  • Comoglio C (2011) Scoping mission at Iron Gates I and II dams (Romania and Serbia). Preliminary assessment of the feasibility for providing free passage to migratory fish species. FAO Mission Report, May 2011, p 39. https://awsassets.panda.org/downloads/34_2011_fao_mission_report_fish_migration_iron_gates_int.pdf

  • Constantinescu Ș, Achim D, Rus I, Giosan L (2015) Embanking the lower Danube: from natural to engineered floodplains and back. In: Hudson P, Middelkoop H (eds) Geomorphic approaches to integrated floodplain management of lowland fluvial systems in North America and Europe. Springer, New York, pp 265–288. https://doi.org/10.1007/978-1-4939-2380-9_11

    Chapter  Google Scholar 

  • Enciu P (2007) Pliocenul şi Cuaternarul din vestul Bazinului Dacic. Stratigrafie şi evoluţie paleogeografică. Editura Academiei Române, Bucureşti

  • European Data News Hub (2020) En Serbie, un Danube pas vraiment bleu, POLLUTION DE L'ENVIRONNEMENT, Agence France-Presse. https://ednh.news/fr/en-serbie-un-danube-pas-vraiment-bleu/. Accessed 17 Sept 2020

  • Gogoașe-Nistoran DE, Marin AF, Armaș I, Ionescu CS, Tudor GM, Cozma A (2022) Hydro-sedimentary modeling and fluvial morphological processes along the Lower Danube River (Giurgiu-Oltenița-Călărași Reach). In: Negm A, Zaharia L, Ioana-Toroimac G (eds) The Lower Danube River. Springer, Cham, pp 69–111. https://doi.org/10.1007/978-3-031-03865-5_3

    Chapter  Google Scholar 

  • Grecu F (2010) Geografia câmpiilor României. Editura Universității din Bucureşti

  • Grecu F (2018) Geomorfologie dinamică pluvio-fluvială. Teorie şi aplicaţii. Editura Universitară, Bucureşti. ISBN 978-606-28-0727-6. https://doi.org/10.5682/9786062807276

  • Grecu F, Zaharia L, Toroimac G, Dobre R (2007) Risque météo-hydrologique dans la vallée du Danube roumain. Le cas des inondations d’avril-mai 2006. Climat, Tourisme, Environnement. In: Actes du XXeme Colloque de L’Association Internationale de Climatologie, 3–8 septembre 2007, Tunis-Carthage, Tunisie, pp 277–282

  • Grecu F, Ioana-Toroimac G, Constantin DM, Carablaisă S, Zaharia L, Costache R, Munteanu A (2015) L’événement pluvial de septembre 2014 dans le défilé du Danube (Roumanie)–aléas et risques exceptionnels. XXVIIIe Colloque de l’Association Internationale de Climatologie, Liège, Belgique

  • Grecu F, Ioana-Toroimac G, Grigorie Ș, Ghiță C (2017a) The dynamics of the Danube channel over the last 150 years. In: Proceedings of Romanian Geomorphology Symposium, Ed. Universității Alexandru Ioan Cuza din lași. pp 56–59. https://doi.org/10.15551/prgs.2017.56

  • Grecu F, Zaharia L, Ioana-Toroimac G, Armaş I (2017b) Floods and flash-floods related to river channel dynamics. In: Radoane M, Vespremeanu-Stroe A (eds) Landform dynamics and evolution in Romania. Springer, Cham, pp 821–844. https://doi.org/10.1007/978-3-319-32589-7_33

    Chapter  Google Scholar 

  • Grecu F, Ioana-Toroimac G, Osaci-Costache G, Zaharia L, Cocoș O, Hachemi K, Sălăjan L (2022) Dynamics of Islands and Danube River Channel Along Vedea-Călărași Sector (1856–2019): Hydrogeomorphological Approach. In: Negm A, Zaharia L, Ioana-Toroimac G (eds) The Lower Danube River. Springer, Cham, pp 43–67. https://doi.org/10.1007/978-3-031-03865-5_2

    Chapter  Google Scholar 

  • Guvernul României (2022) Trei din patru cetățeni consideră semnificative schimbările climatice din România din ultimii 30 de ani. Cum este percepția privind fenomenele meteo extreme [Press release]. https://dezvoltaredurabila.gov.ro/web/2022/01/18/trei-din-patru-cetateni-considera-semnificative-schimbarile-climatice-din-romania-din-ultimii-30-de-ani-cum-este-perceptia-privind-fenomenele-meteo-extreme/. Accessed 19 Jan 2022

  • Habersack H, Hein T, Stanica A, Liska I, Mair R, Jäger E, Hauer C, Bradley C (2016) Challenges of river basin management: current status of, and prospects for, the River Danube from a river engineering perspective. Sci Total Environ 543:828–845. https://doi.org/10.1016/j.scitotenv.2015.10.123

    Article  Google Scholar 

  • Hachemi K, Thomas YF (2013) Analyse de la mobilité d’un champ de Barkhanes (Mauritanie) à partir des images SAR. In: Conférence internationale de Géomatique et d’Analyse Spatiale SAGEO (Spatial Analysis and GEOmatics), IUEM, Brest, France, pp 23–26

  • Hachemi K, Abdellaoui A, Grecu F, Ozer A, Visan M (2010) Association d’images diachroniques avec un MNA pour une meilleure interprétation des changements de paysage dans la région de Buzău (Roumanie). Rev Geomorfol 12:59–71

    Google Scholar 

  • Hachemi K, Thomas YF, Senhoury AOEM, Achek-Youcef M, Ozer A, Nouacer HA (2014) Etude de l’évolution du trait de côte au niveau du port de Nouakchott (Mauritanie) à partir d’une chronique d’images SAR d’ENVISAT. Geo Eco Trop 38(1):169–178

    Google Scholar 

  • Hachemi K, Thomas YF, Senhoury AOEM, Martin T (2015) Multitemporal analysis of the city of Nouakchott (Mauritania) based on ENVISAT ASAR images. Geoinfor Geostat Overv 4(1):1–7. https://doi.org/10.4172/2327-4581.1000129

    Article  Google Scholar 

  • Hachemi K, Daoudi M, Bamousa AO, Belalia A, Achek-Youcef M, Ozer A, Kuzucuoğlu C (2016) Utilisation d’imagerie radar SAR (ERS, ENVISAT) pour l’étude du système de drainage de la région aride du sud-ouest de Riyadh. Poster session presented at 25ème Réunion des Sciences de la Terre (RST), Caen, France

  • Hachemi K, Thomas YF, Martin T (2019) Classification of dune dynamics from SAR images: case study of the barchans of north-east of Nouadhibou, Mauritania (1995–2010). Photo Interprét Eur J Appl Remote Sens 55(1-2-3-4)

  • Hachemi K, Amrouni Y, Daoudi M, Bamousa AO (2020a) Diachronic study of the great Sebkha of Oran (western Algeria) based on SAR radar images (1992–2011). J Taibah Univ Sci 14(1):1433–1446. https://doi.org/10.1080/16583655.2020.1825183

    Article  Google Scholar 

  • Hachemi K, Grecu F, Ioana-Toroimac G, Grigorie Ş, Ozer A, Kuzucuoğlu C (2020b) Contribution of SAR Radar imagery in the study of the dynamics of the Danube Island System, Giurgiu-Călăraşi Sector, Romania. Adv Model Anal B 63(1–4):1–6. https://doi.org/10.18280/ama_b.631-401

    Article  Google Scholar 

  • Hachemi K, Grecu F, Ioana-Toroimac G, Grigorie Ş, Ozer A, Kuzucuoğlu C (2021a) The utility of morphometric parameters extracted from SAR Radar images in the monitoring of the dynamics of the Danube Island System, Giurgiu-Călăraşi Sector, Romania. Int J Des Nat Ecodyn 16(1):13–19. https://doi.org/10.18280/ijdne.160103

    Article  Google Scholar 

  • Hachemi K, Grecu F, Ioana-Toroimac G, Constantin DM, Ozer A (2021b) The diachronic analysis of island dynamics along the Vedea-Oltenița Danube river sector using SAR imagery. Mediterr Geosci Rev 3(3):159–173. https://doi.org/10.1007/s42990-020-00042-5

    Article  Google Scholar 

  • Hidroelectrica (2019) Sistemele hidroenergetice si de navigatie (SHEN) Portile de Fier I si II. https://www.hidroelectrica.ro/article/f5e9cc4f-2c02-3701-0316-76d5dc27d358. Accessed 12 Aug 2022

  • Hohensinner S, Grupe S, Klasz G, Payer T (2022) Long-term deposition of fine sediments in Vienna’s Danube floodplain before and after channelization. Geomorphology 398:108038. https://doi.org/10.1016/j.geomorph.2021.108038

    Article  Google Scholar 

  • Institutul de Geologie și Geografie al Academiei Republicii Socialiste România, Ianovici V (1969) Geografia văii dunării românești. Editura Academiei Republicii Socialiste România

  • Institutul de Geografie al Academiei Române (2005) Geografia României (vol. 5). Editura Academiei Române, Bucureşti

  • Ioana-Toroimac G (2014) Protection et restauration de la plaine inondable du Danube (Roumanie): de l’état des lieux au cas du lac Suhaia. Développement Durable Et Territoires. https://doi.org/10.4000/developpementdurable.10550

    Article  Google Scholar 

  • Ioana-Toroimac G, Salit F (2016) La restauration hydromorphologique d’un hydrosystème social. Étude de cas du Danube en Roumanie. Cinq Cont 6(14):219–234

    Google Scholar 

  • Ioana-Toroimac G, Zaharia L, Moroșanu GA, Grecu F, Hachemi K (2022) Assessment of restoration effects in riparian wetlands using satellite imagery. Case study on the Lower Danube River. Wetlands 42:1–14. https://doi.org/10.1007/s13157-022-01543-9

    Article  Google Scholar 

  • Iordache G, Bondar C, Anghel S, Malageanu M (2017) Morphological changes of the fluvial islets from the Danube River (Turcescu islet—Cernavoda sector) between 1908 and 2016. Geo Eco Mar 23:197–204. https://doi.org/10.5281/zenodo.1688236

    Article  Google Scholar 

  • Iordache G, Bondar C, Anghel S, Malageanu M (2018) Evolution of danubian islets from Balta Ialomitei hydrographic system (Km 345–241) between 1908–2016. Sci Ann Danube Delta Inst 23:41–50. https://doi.org/10.7427/DDI.23.06

    Article  Google Scholar 

  • Iordache G, Bondar C, Anghel S, Malageanu M, Dudu A (2019) Using of GIS techniques to assess the spatial changes of the fluvial Islands in the Corabia Area—Bechet Harbor Sector (Km 626–679) between 1910–2017. Sci Ann Danube Delta Inst 24:251–260. https://doi.org/10.7427/DDI.24.27

    Article  Google Scholar 

  • Kollmann J, Vieli M, Edwards PJ, Tockner K, Ward JV (1999) Interactions between vegetation development and island formation in the Alpine River Tagliamento. Appl Veg Sci 2(1):25–36

    Article  Google Scholar 

  • Kondolf GM (1997) PROFILE: Hungry water: effects of dams and gravel mining on river channels. Environ Manag 21(4):533–551. https://doi.org/10.1007/s002679900048

    Article  Google Scholar 

  • Mărculet C, Grecu F, Carablaisă S, Dumitrică C (2020) Extreme heating in cities of the romanian plain. Certainties and uncertainties about the factors of influence. Anal Univ Bucuresti LXIX:89–102. https://doi.org/10.5719/aub-g/69.1/5

    Article  Google Scholar 

  • Marin AF (2016) A methodological framework for the morphometric analysis of the fluvial islets along the Danube River in the Giurgiu—Olteniţa sector. GeoPatterns 1(2):18–22

    Google Scholar 

  • Marin AF, Armaș I (2016) Shape characteristics of fluvial islets based on GIS techniques. A case study: the Danube’s islets between Giurgiu and Olteniţa. Forum Geogr 15(2):133–139. https://doi.org/10.5775/fg.2067-4635.2016.047.d

    Article  Google Scholar 

  • Niculescu S, Lardeux C, Frison PL, Rudant JP (2009) L’approche Sociale et Radar de la Gestion du Risque d’inondation dans le Delta du Danube. La Houille Blanche 95(2):81–87. https://doi.org/10.1051/lhb/2009018

    Article  Google Scholar 

  • Nougrara Z, Hachemi K (2021) A new method of drainage network extraction using SAR radar images: a case study of Djanet (Algeria). J Taibah Univ Sci 15(1):1101–1107. https://doi.org/10.1080/16583655.2021.2018816

    Article  Google Scholar 

  • Opreanu G (2008) Caracterizarea granulometrică mineralogică geochimică şi dinamică a încărcăturii sedimentare a fluviului Dunărea. [Teza de doctorat]. Facultatea de Geologie şi Geofizică—Universitatea din Bucureşti

  • Osterkamp WR (1998) Processes of fluvial island formation, with examples from Plum Creek, Colorado and Snake River, Idaho. Wetlands 18(4):530–545. https://doi.org/10.1007/BF03161670

    Article  Google Scholar 

  • Picco L, Ravazzolo D, Rainato R, Lenzi MA (2014a) Characteristics of fluvial islands along three gravel-bed rivers of North-Eastern Italy. Cuadernos De Investigación Geográfica/geogr Res Lett 40(1):53–66. https://doi.org/10.18172/cig.2505

    Article  Google Scholar 

  • Picco L, Mao L, Rainato R, Lenzi MA (2014b) Medium-term fluvial island evolution in a disturbed gravel-bed river (Piave River, Northeastern Italian Alps). Geogr Ann Ser B 96(1):83–97. https://doi.org/10.1111/geoa.12034

    Article  Google Scholar 

  • Poff NL, Olden JD, Merritt DM, Pepin DM (2007) Homogenization of regional river dynamics by dams and global biodiversity implications. Proc Natl Acad Sci 104(14):5732–5737. https://doi.org/10.1073/pnas.0609812104

    Article  Google Scholar 

  • Posea G (2005) Geomorfologia României: relief-tipuri, geneză, evoluţie şi regionare. Editura Fundaţiei România de Mâine, Bucureşti

  • Raslan Y, Salama R (2015) Development of Nile River islands between Old Aswan Dam and new Esna barrages. Water Sci 29(1):77–92. https://doi.org/10.1016/j.wsj.2015.03.003

    Article  Google Scholar 

  • Sadek N (2013) Island development impacts on the Nile River morphology. Ain Shams Eng J 4(1):25–41. https://doi.org/10.1016/j.asej.2012.06.006

    Article  Google Scholar 

  • Strat D, Mihăilescu S, Gheorghe IF (2022) Anthropogenic changes and biodiversity protection and conservation along the Lower Danube River Valley. In: Negm A, Zaharia L, Ioana-Toroimac G (eds) the Lower Danube River. Springer, Cham, pp 443–480. https://doi.org/10.1007/978-3-031-03865-5_15

    Chapter  Google Scholar 

  • Ujvári I (1972) Geografia apelor României. Editura Ştiinţifică, Bucureşti.

  • Wikipédia (2014) Inondations en Europe du Sud-Est de 2014. https://fr.wikipedia.org/wiki/Inondations_en_Europe_du_Sud-Est_de_2014. Accessed 2 Sept 2022

  • Wyrick JR (2005) On the formation of Fluvial Islands [Ph.D. Thesis]. Oregon State University, USA

  • Wyrick JR, Klingeman PC (2011) Proposed fluvial island classification scheme and its use for river restoration. River Res Appl 27(7):814–825. https://doi.org/10.1002/rra.1395

    Article  Google Scholar 

  • Zaharia L, Grecu F, Ioana-Toroimac G, Neculau G (2011) Sediment transport and river channel dynamics in Romania-variability and control factors. In: Manning AJ (ed) Sediment transport in aquatic environments. IntechOpen, New York, pp 293–316. https://doi.org/10.5772/21416

    Chapter  Google Scholar 

  • Zaharia L, Ioana-Toroimac G (2013) Romanian Danube River management: impacts and perspectives. In: Arnaud-Fassetta G, Masson E, Reynard E (eds) European continental hydrosystems under changing water policy. Verlag Friedrich Pfeil, München, pp 159–170

    Google Scholar 

  • Zaharia L, Ioana-Toroimac G, Morosanu GA, Tuchiu E, Osaci-Costache G, Negm A (2022) Flow variability of the lower danube river: an up-to-date overview. In: Negm A, Zaharia L, Ioana-Toroimac G (eds) the Lower Danube River. Springer, Cham, pp 3–42. https://doi.org/10.1007/978-3-031-03865-5_1

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank the European Space Agency (ESA) for providing us with the SAR images of the ERS and Sentinel 1 satellites as part of a research project on the monitoring and surveillance of the Danube islands in the Orşova–Vedea sector, Romania. We also thank the Professor Florin TATUI, from the University of Bucharest for proofreading this article. We are grateful to the National Meteorological Administration of Romania and more especially to Dr. Alexandru DUMITRESCU (Department of Climatology) for the meteorological data.

Funding

NA.

Author information

Authors and Affiliations

Authors

Contributions

KH conceived the idea presented, described the methodology adopted, performed the image processing and numerical calculations and took the initiative to write the manuscript. FG designed the general idea, helped supervise the project, organized the design and implementation of the research, and wrote part of the manuscript. ZN helped describe the methodology adopted and performed the verification and analysis of the results. AEO carried out the bibliographic study, performed the verification and analysis of the results, and helped and wrote part of the manuscript. YA processed and produced the maps. All authors contributed to the interpretation of the results and contributed to the final manuscript. All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Corresponding author

Correspondence to Kamel Hachemi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

All investigations relied on open access data.

Consent to participate

NA.

Consent for publication

NA.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Table showing the morphometric parameters of all islands/sub-islands extracted in 1992 and 2022 on the Orşova–Vedea section and their differences

No

Name of Island

1992

2022

2022–1992

Coordinate of centroid

Perimeter

Area

Coordinate of centroid

Perimeter

Area

Coordinate of centroid

Perimeter

Area

Lon (°)

Lat (°)

P (m)

S (m2)

Lon (°)

Lat (°)

P (m)

S (m2)

∆Lon (°)

∆Lat (°)

P (m)

S (m2)

1

Island_1

22.55

44.66

3099.27

271,591.99

22.55

44.66

3197.17

270,841.7

0

0

97.9

− 750.29

2

Island_2_1

22.69

44.61

3669.27

555,421.03

22.69

44.61

3474.8

539,019.17

0

0

− 194.47

− 16,401.9

3

Island_2_2

22.7

44.6

2395.24

117,703.27

22.71

44.6

2450.31

124,996.53

0.01

0

55.07

7293.26

4

Island_3

0

0

0

0

22.69

44.52

1615.83

99,614.39

22.69

44.52

1615.83

99,614.39

5

Island_4

22.54

44.36

34,558.9

23,547,804

22.54

44.36

34,378.3

23,522,108

0

0

− 180.6

− 25,696.5

6

Island_5

22.65

44.29

2681.74

171,843.84

0

0

0

0

− 22.65

− 44.29

− 2681.74

− 171,844

7

Island_6_1

22.76

44.2

4497.28

857,824.3

22.76

44.2

3669.29

687,662.67

0

0

− 827.99

− 170,162

8

Island_6_2

22.75

44.2

1874.3

153,955.53

22.75

44.2

772.37

17,701.65

0

0

− 1101.93

− 136,254

9

Island_6_3

22.75

44.2

1308.04

43,971.86

22.75

44.2

530.7

12,016.15

0

0

− 777.34

− 31,955.7

10

Island_7_1

22.85

44.15

7885.89

1,102,038.5

22.86

44.14

2699.49

174,670.7

0.01

− 0.01

− 5186.4

− 927,368

11

Island_7_2

22.84

44.14

2441.22

151,089.01

22.85

44.14

2054.66

130,907.52

0.01

0

− 386.56

− 20,181.5

12

Island_8

22.89

44.11

1904.18

128,598.49

22.89

44.11

2016.5

138,927.67

0

0

112.32

10,329.18

13

Island_9

23.03

44.06

4284.03

490,338.61

23.04

44.06

5204.76

503,923.88

0.01

0

920.73

13,585.27

14

Island_10_1

22.99

44.01

7021.75

1,177,018.5

22.99

44.01

6321.8

1,145,597.6

0

0

− 699.95

− 31,420.9

15

Island_10_2

22.97

44.01

1496.38

83,447.75

22.96

44.01

2003.63

158,238.44

− 0.01

0

507.25

74,790.69

16

Island_10_3

22.96

44.01

2978.74

366,653.96

22.95

44.01

1116.33

52,055.44

− 0.01

0

− 1862.41

− 314,599

17

Island_10_4

22.95

44.01

1343.67

58,024.31

22.94

44.01

703.14

21,211.4

− 0.01

0

− 640.53

− 36,812.9

18

Island_10_5

22.94

44.01

1215.9

41,108.95

0

0

0

0

− 22.94

− 44.01

− 1215.9

− 41,109

19

Island_11_1

22.89

43.98

8756.12

2,333,982

22.89

43.98

8556.52

2,311,524.6

0

0

− 199.6

− 22,457.5

20

Island_11_2

22.89

43.99

1451.38

59,629.94

22.89

43.98

1094.32

41,274.72

0

− 0.01

− 357.06

− 18,355.2

21

Island_12_1

22.85

43.92

5391.81

1,257,059

22.85

43.92

5412.86

1,287,885.6

0

0

21.05

30,826.67

22

Island_12_2

22.86

43.92

1250.5

59,646.24

0

0

0

0

− 22.86

− 43.92

− 1250.5

− 59,646.2

23

Island_13_1

22.83

43.88

4345.61

479,216.63

22.83

43.88

4379.41

447,357.53

0

0

33.8

− 31,859.1

24

Island_13_2

22.84

43.87

3015.55

236,877.61

22.84

43.87

2953.35

226,299.29

0

0

− 62.2

− 10,578.3

25

Island_14_1

23.03

43.79

9145.45

1,385,287.7

23.02

43.79

11,909.23

1,809,557.2

− 0.01

0

2763.78

424,269.5

26

Island_14_2

23.05

43.8

5429.19

763,022.36

23.06

43.8

5427.5

708,247.38

0.01

0

− 1.69

− 54,775

27

Island_14_3

23.01

43.8

8782.8

1,003,309.6

23.01

43.8

8887.65

1,017,461.7

0

0

104.85

14,152.13

28

Island_14_4

22.96

43.81

4031.85

340,886.1

22.96

43.81

5368.21

520,928.46

0

0

1336.36

180,042.4

29

Island_14_5

22.96

43.82

4767.99

485,328.86

22.96

43.82

4904.18

569,295.49

0

0

136.19

83,966.63

30

Island_15_1

23.14

43.81

2273.79

175,799.1

23.14

43.81

2191.52

164,069.13

0

0

− 82.27

− 11,730

31

Island_15_2

23.15

43.81

1765.77

45,922.2

23.15

43.81

1505.45

33,234.69

0

0

− 260.32

− 12,687.5

32

Island_15_3

0

0

0

0

23.12

43.81

3391.03

221,908.52

23.12

43.81

3391.03

221,908.5

33

Island_16_1

23.3

43.85

5739.89

1,079,615.6

23.3

43.85

6368.03

1,159,213.5

0

0

628.14

79,597.88

34

Island_16_2

23.23

43.84

1325

52,340.7

23.23

43.84

1280.37

52,301.33

0

0

− 44.63

− 39.37

35

Island_16_3

0

0

0

0

23.21

43.83

1319.23

65,650.33

23.21

43.83

1319.23

65,650.33

36

Island_17_1

23.52

43.83

6709.62

1,245,812.7

23.52

43.83

7859.18

1,428,006.7

0

0

1149.56

182,194

37

Island_17_2

23.56

43.81

3701.24

393,355.64

23.56

43.81

5250.02

690,025.04

0

0

1548.78

296,669.4

38

Island_17_3

23.58

43.8

2878.05

254,608.48

23.59

43.8

5541.85

1,000,396.8

0.01

0

2663.8

745,788.4

39

Island_18_1

23.74

43.79

24,490.91

9,051,666.9

23.74

43.79

24,505.8

9,069,263.3

0

0

14.89

17,596.45

40

Island_18_2

23.78

43.79

11,392.75

4,595,475.5

23.78

43.79

10,310.71

4,292,973.8

0

0

− 1082.04

− 302,502

41

Island_18_3

23.9

43.75

4571.02

481,919.79

23.9

43.75

4038.09

371,574.9

0

0

− 532.93

− 110,345

42

Island_19_1

24.11

43.71

11,395.94

4,270,325.6

24.11

43.71

11,321.15

3,890,244.3

0

0

− 74.79

− 380,081

43

Island_19_2

24.04

43.72

8199.18

1,546,212.7

24.04

43.72

8509.89

1,433,650.9

0

0

310.71

− 112,562

44

Island_19_3

24.08

43.71

1423.49

100,089.98

24.08

43.71

2303.31

187,664.89

0

0

879.82

87,574.91

45

Island_20_1

24.32

43.7

6919.94

1,119,419.4

24.33

43.7

5733.74

875,930.01

0.01

0

− 1186.2

− 243,489

46

Island_20_2

24.38

43.72

2473.53

115,007.09

24.38

43.72

1710.23

66,657.14

0

0

− 763.3

− 48,350

47

Island_20_3

24.24

43.69

2779.6

121,332.01

0

0

0

0

− 24.24

− 43.69

− 2779.6

− 121,332

48

Island_21_1

24.54

43.77

6900.87

1,471,399.1

24.54

43.76

6431.51

1,264,721.9

0

− 0.01

− 469.36

− 206,677

49

Island_21_2

24.52

43.76

3085.85

426,364.89

24.5

43.77

4480.05

386,648.64

− 0.02

0.01

1394.2

− 39,716.3

50

Island_21_3

24.5

43.76

3753.52

383,617.8

24.52

43.76

1415.9

70,085.13

0.02

0

− 2337.62

− 313,533

51

Island_21_4

24.54

43.76

3335.17

322,226.89

24.55

43.76

4740.16

320,079.98

0.01

0

1404.99

− 2146.91

52

Island_21_5

24.49

43.75

1372.93

76,195.65

0

0

0

0

− 24.49

− 43.75

− 1372.93

− 76,195.7

53

Island_22_1

24.73

43.7

20,474.07

10,412,411

24.73

43.7

20,137.74

10,059,135

0

0

− 336.33

− 353,276

54

Island_22_2

24.67

43.72

3047.09

391,216.45

24.64

43.74

5161.17

850,493.13

− 0.03

0.02

2114.08

459,276.7

55

Island_22_3

24.64

43.74

5450.98

837,424.8

24.71

43.71

2221.67

158,568.87

0.07

− 0.03

− 3229.31

− 678,856

56

Island_22_4

24.71

43.71

3588.1

259,986.66

0

0

0

0

− 24.71

− 43.71

− 3588.1

− 259,987

57

Island_22_5

24.85

43.7

2183.36

149,240.65

0

0

0

0

− 24.85

− 43.7

− 2183.36

− 149,241

58

Island_23_1

25

43.72

6886.78

2,100,768.4

25

43.72

6469.42

1,847,297.7

0

0

− 417.36

− 253,471

59

Island_23_2

25.02

43.72

2940.02

374,030.77

25.02

43.72

2594.51

278,394.37

0

0

− 345.51

− 95,636.4

60

Island_23_3

24.97

43.72

4766.23

744,921.79

24.97

43.72

4275.48

700,914.26

0

0

− 490.75

− 44,007.5

61

Island_23_4

24.95

43.71

4224.07

446,856.99

24.95

43.71

4533.89

492,972.54

0

0

309.82

46,115.55

62

Island_23_5

25.01

43.71

1774.49

112,631.07

25.01

43.71

887.49

39,210.25

0

0

− 887

− 73,420.8

63

Island_23_6

25.02

43.71

3619.94

614,935.9

25.01

43.71

9673.22

891,597.61

− 0.01

0

6053.28

276,661.7

64

Island_23_7

25

43.71

2394.36

177,713.73

25.04

43.7

1648.64

73,039.98

0.04

− 0.01

− 745.72

− 104,674

65

Island_23_8

25.03

43.7

2047.38

150,311.68

0

0

0

0

− 25.03

− 43.7

− 2047.38

− 150,312

66

Island_23_9

24.96

43.72

864.54

38,600.99

0

0

0

0

− 24.96

− 43.72

− 864.54

− 38,601

67

Island_24_1

25.19

43.67

34,569.33

50,650,396

25.19

43.67

32,980.67

50,042,485

0

0

− 1588.66

− 607,911

68

Island_24_2

25.16

43.65

7385.58

1,933,646.5

25.16

43.64

7208.44

1,864,876.1

0

− 0.01

− 177.14

− 68,770.4

69

Island_24_3

25.24

43.65

5205.66

732,347.16

25.24

43.65

4789.08

706,077.84

0

0

− 416.58

− 26,269.3

70

Island_24_4

25.26

43.68

5180.36

664,557.14

25.27

43.67

6262.91

940,523.79

0.01

− 0.01

1082.55

275,966.7

71

Island_24_5

25.19

43.69

4789.96

521,261.98

25.19

43.69

4358.13

473,662.15

0

0

− 431.83

-47,599.8

72

Island_24_6

25.16

43.7

2753.92

241,977.97

25.12

43.66

4988.94

625,726.81

− 0.04

− 0.04

2235.02

383,748.8

73

Island_24_7

25.15

43.7

1854.67

128,761.61

0

0

0

0

− 25.15

− 43.7

− 1854.67

− 128,762

74

Island_24_8

25.14

43.69

2179.4

220,066.52

0

0

0

0

− 25.14

− 43.69

− 2179.4

− 220,067

75

Island_24_9

25.15

43.7

1528.79

63,662.2

0

0

0

0

− 25.15

− 43.7

− 1528.79

− 63,662.2

76

Island_24_10

25.12

43.66

4301.59

555,129.64

0

0

0

0

− 25.12

− 43.66

− 4301.59

− 555,130

77

Island_24_11

25.12

43.67

832.75

28,071.85

0

0

0

0

− 25.12

− 43.67

− 832.75

− 28,071.9

78

Island_25_1

25.48

43.63

12,732.13

6,832,603.1

25.48

43.63

12,878.59

6,643,674.2

0

0

146.46

− 188,929

79

Island_25_2

25.54

43.65

5282.19

1,009,755.7

25.53

43.65

4182.39

646,120.58

− 0.01

0

− 1099.8

− 363,635

80

Island_25_3

25.5

43.64

4000.89

427,979.81

25.56

43.64

1179.44

40,271.17

0.06

0

− 2821.45

− 387,709

81

Island_25_4

25.49

43.64

4246.43

355,563.1

25.51

43.64

1986.43

49,822.4

0.02

0

− 2260

− 305,741

82

Island_25_5

25.56

43.64

1879.45

113,981.52

25.5

43.63

772.5

28,521.56

− 0.06

− 0.01

− 1106.95

− 85,460

83

Island_25_6

25.57

43.65

4131.24

528,002.85

0

0

0

0

− 25.57

− 43.65

− 4131.24

− 528,003

84

Island_25_7

25.58

43.66

2022.84

197,525.04

0

0

0

0

− 25.58

− 43.66

− 2022.84

− 197,525

85

Island_25_8

25.5

43.63

560.05

21,554.98

0

0

0

0

− 25.5

− 43.63

− 560.05

− 21,555

86

Island_26_1

25.68

43.68

15,456.16

6,707,367.1

25.68

43.68

15,391.49

6,116,377.5

0

0

− 64.67

− 590,990

87

Island_26_2

25.66

43.68

2286.64

219,444.88

25.66

43.68

2096.72

163,295.19

0

0

− 189.92

− 56,149.7

88

Island_26_3

25.66

43.67

2217.45

154,739.01

25.66

43.67

1573.02

107,121.63

0

0

− 644.43

− 47,617.4

89

Island_26_4

25.77

43.71

2021.1

121,808.04

25.77

43.71

2570.86

134,015.09

0

0

549.76

12,207.05

90

Island_26_5

0

0

0

0

25.76

43.71

2158.5

55,896.94

25.76

43.71

2158.5

55,896.94

91

Island_26_6

0

0

0

0

25.76

43.71

499.52

11,989.27

25.76

43.71

499.52

11,989.27

Appendix 2: Comparison graphs of the perimeters (P) of the islands and sub-islands of the Danube River along Orşova–Vedea sector (study area), in 1992 and in 2022

figure a

Appendix 3: Comparison graphs of the areas (S) of the islands and sub-islands of the Danube River along Orşova–Vedea sector (study area), in 1992 and in 2022

figure b

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hachemi, K., Grecu, F., Nougrara, Z. et al. Monitoring the dynamics of the Danube islands system, using SAR imagery (Orșova–Vedea sector, 1992–2022). Environ Earth Sci 82, 590 (2023). https://doi.org/10.1007/s12665-023-11281-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-023-11281-8

Keywords

Navigation