Skip to main content

Advertisement

Log in

Fractures and lineaments mapping and hydrodynamic impacts on surface and groundwater occurrence and quality in an arid region, Oued M’ya basin–Southern Sahara, Algeria

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Within Algerian Sahara, the Oued M’ya basin contains four major superposed aquifers that exhibit water upwelling phenomena and form wetland and sabkha environments. These events raise the likelihood of environmental degradation in urban and agricultural areas. This research aims to better understand the origins and dynamics of this complex issue. It is a structural approach to investigating the causes of the physicochemical and geochemical quality of the surface and groundwater in this zone and their relationship to the aforementioned phenomena. The effects of hydro-structural features such as lineaments and fractures on the occurrence and quality of surface and groundwater are studied. In addition, plans and practical methods for managing water upwelling are suggested. GIS and statistical tools were used to apply manual and automatic recognition techniques. The automatic method was used to statistically analyze lineaments and their presentation. These techniques enabled us to determine the parameters of the lineament, such as its direction, length, and frequency. The lineament map was created by examining satellite images of the area and identifying several families of lineaments based on preferential and global orientations. By comparing surface and subsurface data, we could better understand the regional and local hydrogeological implications of lineaments and their regional geological context. As a result, the nature of subsurface lineaments was evaluated and confirmed. The piezometric map and the location of geochemical anomalies show that faults and associated fractures significantly impact groundwater movement. Faults can either facilitate or impede groundwater flow depending on their location in the study area and whether they are driven by tension, compression, or shear stresses. The nature of the material involved, the degree of deformation induced, the materials present in the fault system, and the depth beneath the surface all influence the role of faults as preferred pathways or barriers to groundwater flow. Faults can also contribute to the formation of surface water in arid zones by forming depressions or basins that collect water and form wetlands, such as Sebkhas and Chotts. Lineaments and faults can allow freshly or slightly less salted groundwater to reach the surface and mix with salty surface water, resulting in varying brininess and water chemistry in different wetland regions. Fractures can affect the water chemistry of these wetland ecosystems by controlling the water supply and the degree of mixing between groundwater and saline surface water. The identified geochemical abnormalities (mixing zones) can be linked to various factors, including the flow rate, origin, and path of the recharge zones and the structural framework and rock properties of subsurface reservoirs. According to previous research, this local study’s findings can be extrapolated to the regional scale of the Saharan platform. Several faults influence the latitudinal limit of the Continental Intercalaire (CI) aquifers, according to the structural analysis of the studied area. At the local and regional scales, groundwater geochemistry and mineralogy revealed a clear spatial correlation between hydrogeochemical facies clusters and reservoir compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11 
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig.  18
Fig.  19
Fig. 20 

Similar content being viewed by others

Data availability

Data of this study are available from the corresponding author on reasonable request.

References

  • Abdelali A, Nezli IE, Kechiched R, Attalah S, Benhamida SA, Pang Z (2020) Geothermometry and geochemistry of groundwater in the Continental Intercalaire aquifer, southeastern Algeria: insights from cations, silica and SO4–H2O isotope geothermometers. Appl Geochem 113:104492. https://doi.org/10.1016/japgeochem2019104492

    Article  Google Scholar 

  • Aliev AD, Krentsel BA, Alieva SL (1983) HSAB principle and desulphuration reaction during ionic coordination polymerization of thiiranes [1]. Eur Polym J 19(1):71–79. https://doi.org/10.1016/0014-3057(83)90104-0

    Article  Google Scholar 

  • Andreas M, Allan A (2007) Incorporating geology and geomorphology in land management decisions in developing countries: a case study in Southern Costa Rica. Geomorphology 87:68–89. https://doi.org/10.1016/jgeomorph200606043

    Article  Google Scholar 

  • ANRH (1966) Bel F, Dermagne F Etude géologique du Continental Terminal, Algérie

  • ANRH (1998) Resultats d’analyses physico-chimiques des eaux des differentes nappes de la wilaya de Ouargla, campagnes de surveillances, rapport interne, 15 p

  • ANRH (2015) Note de synthèse sur les mesures piézométriques captant la nappe phréatique du dans la wilaya de Ouargla, Rapport de l’Agence nationale des ressources hydriques- Ouargla, 10p

  • Aumassip G, Ferhat N (2002) Le quaternaire dans le Sahara algérien Mém ServGéol Algn°11 195–206.

  • Ballais J L (2010) Des Oueds mythiques aux rivières artificielles: l’hydrographie du bas-sahara algérien Physio-Géo - Géographie Phy-sique et Environnement 2010 volume IV.

  • Batista DB, Faria PM, Mesiano SVL, Matos AG, Barreto HD (2022) Semantic segmentation for automatic extraction of linear geological structures from Uav Imagery - Saelgs. Available at SSRN. https://ssrn.com/abstract=4207671 or https://doi.org/10.2139/ssrn.4207671

  • Benhamida S, Nezli IE, Kechiched R (2017) Sources of chemistry of the albian waters under arid conditions Application to the western regions of the Algerian Sahara. In: International Conference on Technologies and Materials for Renewable Energy Environment and Sustainability TMREES17 21-24 April 2017 Beirut Lebanon. https://doi.org/10.1016/j.egy.pro.2017.07.047.

  • Bérard P (1982) Interprétation des images satellites en complément à la photointerprétation traditionnelle pour la définition des structures hydrogéologiques au Niger et en Haute-Volta - P 67–82 in Colloque sur les milieux discontinus en hydrogéologie Document 45 Bureau de recherches géologiques et minières Orléans

  • Besbes M (2006) Holocene recharge and present recharge of the saharan aquifers A study by numerical modeling In Colloque international Gestion des grands aquifères - 30 mai-1er juin 2006 Dijon France.

  • BJ-Suisse (2002) Etude d’assainissement des eaux résiduaires, pluviales et d’irrigation. Mesures complémentaires de lutte contre la remontée de la nappe phréatique. Rapport de la mission II A. Essai de pompage. Bonard &Gardel, Lausanne, 110p

  • Bonnard C, Forlati F, Scavia Claudio (2004) Identification and mitigation of large landslide risks in Europe: advances in risk assessment. https://doi.org/10.1201/9781482283877

  • Bonnet T, Colbeaux J P (1999) L’analyse morphologique spatialisée: apport d’une méthode à la détection des accidents une nécessité dans l’approche hydrodynamique karstologique des aquifères fissurés Exemples dans le nord de la France crayeux Geodynamica Acta 12(3-4) 223-235

  • Boudjema A (1987) Evolution Structurale du bassin pétrolier Triasique du Sahara Nord-Oriental (Algérie) [Unpublished doctoral dissertation] Université Paris-Sud

  • Bougrine A, Yelles-Chaouche A, Calais E (2019) Active deformation in Algeria from continuous GPS measurements. Geophys J Int 217:572–588. https://doi.org/10.1093/gji/ggz035

    Article  Google Scholar 

  • Burbank DW, Anderson RS (2001) Tectonic Geomorphology Blackwell Science Ltd.

  • Busson G (1956) Le Mésozoïque saharien. 1ère partie : L’Extrême Sud-tunisien. Edit., Paris, Centre Rech. Zones Arides, Géol., 8, 194 p. Ed. C.N.R.S.

  • Busson G (1967) Le Mésozoïque saharien. 1ère partie L’extrême Sud-tunisien. Edit., Paris, Centre Rech. Zones Arides, Géol, 8, 194 p. Ed. C.N.R.S.

  • Busson G (1972) Principes méthodes et résultats d'une étude stratigraphique du Mésozoïque Saharien Editions du Muséum

  • Busson G, Cornée (1991) The Sahara from the Middle Jurassic to the Middle Cretaceous: Data on environments and climates based on outcrops in the Algerian Sahara. J African Earth Sci 12(1–2):85–105

  • Busson G, Lebeau J (1967) Carte géologique du bassin mésozoïque du Sahara algero-tunisien et de ses abords Ed du CNRS

  • Castany G (1982) Bassins sédimentaires du Sahara septentrional (Algérie Tunisie) Aquifères du Continental intercalaire et du complexe terminal Bull BRGM 2(2) 127–147

  • CDTN Centre de Développement des Techniques Nucléaires (1992) Etude hydrochimique et isotopique des eaux souterraines de la cuvette de Ouargla [Hydrochemical and isotopic study of groundwater in the Ouargla basin] Report

  • CGMW-BRGM (2016) Geological map of Africa at 1:10M Thieblemont Denis, Liegeois JP, Fernandez-Alonso M, Ouabadi Aziouz, Le Gall Bernard, Maury Rene, Vidal Max, Ouattara Gbele, Tchameni Rigobert, Michard Andre, Nehlig Pierre, Rossi Philippe, Chene F

  • Charon JE (1974) Hydrogeological applications of ERTS satellite imagery. In: Proceedings of UN/FAO Regional Seminar on Remote Sensing of Earth Resources and Environment (pp 439–456) Commonwealth Science Council Cairo

  • Charon JE (1976) Hydrogeological Applications of Earth Resources Technology Satellite LANDSAT I Imagery Utilisation des techniques du satellite LANDSAT I dans le domaine de I'hydrogeologie Scientific series no 62 etude n° 62 sfrie scientifique inland waters direc-torate water resources branch ottawa canada 1976 direction générale des eaux intérieures Direction des ressources en eau Ottawa Canada 1976

  • Cheddadi R, Carré M, Nourelbait M, François L, Rhoujjati A, Manay R, Ochoa D, Schefuß E (2021) Early Holocene greening of the Sahara requires Mediterranean winter rainfall. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas2024898118

    Article  Google Scholar 

  • Cornet A, Gouscov N, (1952) Les eaux du Crétacé inférieur continental dans le Sahara algérien (nappe dite "albien") [The lower continental waters of the Algerian Sahara (so-called "Albian" aquifer)] In La géologie et les problèmes de l'eau en Algerie [Geology and water problems in Algeria] XIXème congrès géologique international TII 30p.

  • Coulibaly HSJP, C. Honoré T J, C. Naga, Kouadio A C K, DIDI M R S, Diedhiou A, Savane I (2021) Groundwater exploration using extraction of lineaments from SRTM DEM and water flows in Béré region. Egypt J Remote Sensing Space Sci 24(3):391–400. https://doi.org/10.1016/j.ejrs.2020.07.003

  • Deffontaines B, (2000) Formes et déformations de la surface terrestre approche morphométrique et application [Forms and deformations of the Earth's surface : morphometric approach and application] Thèse d’habilitation à diriger la recherche [Habilitation thesis to supervise research] Université Pierre et Marie Curie Paris

  • Dwivedi D, Chamoli A (2021) Source edge detection of potential field data using wavelet decomposition. Pure Appl Geophys 178:919–938. https://doi.org/10.1007/s00024-021-02675-5

    Article  Google Scholar 

  • Edmunds WM, Shand P, Guendouz A, Moulla AS, Mamou A,Zouari K (1997) Recharge characteristics and groundwater quality of the Grand Erg Oriental basin, final report. EC(Avicenne) contract CT93AVI0015, BGS Tech Rep WD/97/46R Hydrogeol Ser

  • Edmunds W M, Guendouz A H, Mamou A, Moulla A S, Shand P, Zouari K, (2003) Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators. Appl Geochem 18(6) 805–822. https://doi.org/101016/S0883-2927(02)00189-0

  • Eldosouky AM, Elkhateeb SO, Ali A, Kharbish S (2020) Enhancing linear features in aeromagnetic data using directional horizontal gradient at Wadi Haimur area South Eastern Desert Egypt. Carpathian. J Earth Environ Sci 15 323–326. https://doi.org/10.26471/cjees/2020/015/132

  • Eldosouky AM, Saada SA (2020) Source edge detection (SED) of aeromagnetic data: synthetic examples and a case study from Haimur area south Eastern Desert Egypt. Arab J Geosci 13:626. https://doi.org/10.1007/s12517-020-05653-8

    Article  Google Scholar 

  • ENAGEO Entreprise Nationale de Géophysique (1992) Etude hydrogéologique de la nappe phréatique de la cuvette de Ouargla [Hydrogeological study of the phreatic aquifer in the Ouargla basin] Report April 1992.

  • Fabre J (1976) Introduction à la géologie du Sahara algérien et des régions voisines [Introduction to the geology of the Algerian Sahara and neighboring regions] SNED Ed

  • Fabre J (1982) Carte géologique (et gravimétrique) de l'Adrar des Iforas (1/500000) Mali [Geological (and gravimetric) map of the Adrar des Iforas (1/500000) Mali] Dir Nat Géol Mines Bamako

  • Faber J (2005) Géologie du Sahara occidental et central Tervuren Africain géoscience collection vol. 108. Musée royal de l'Afrique centrale – Belgique 2005

  • Fabre J, Latouche L, Kazitani N, Moussine P A, Aït Hamou F, Dautria J M, Maza M (2005) Géologie du Sahara occidental et central [Geology of the western and central Sahara] Tervuren African Geosci. http://www.africamuseum.be/sites/default/files/media/docs/research/publications/rmca/online/digital-publications-geology/Sahara.pdf.

  • Fraipont P, Hirsch J (1984) Analyse linéamentaire: procédure de traitement de données télédétectés. Computers in earth sciences for natural resources characterization: colloque international, Nancy, France, avril

  • Ghaeminejad H, Abedi M, Afzal P, Zaynali F, Yousefi M (2020) A fractal-based outranking approach for mineral prospectivity analysis. Bollettino Di Geofisica Teorica e Applicata (in Press). https://doi.org/10.4430/bgta0324

    Article  Google Scholar 

  • Gibert E, Arnold M, Conrad G, De Deckker P, Fontes J C, Gasse F, Kassir A (1990) Retour des conditions humides au Tardiglaciaire au Sahara septentrional (sebkha Mellala, Algerie). Bulletin de la Société Géologique de France 1990 ; VI (3) : 497–504. https://doi.org/10.2113/gssgfbull.VI.3.497

  • Gobashy MM, Eldougdoug A, Abdelazeem M et al (2021) Future Development of Gold Mineralization Utilizing Integrated Geology and Aeromagnetic Techniques (2021): A Case Study in the Barramiya Mining District, Central Eastern Desert of Egypt. Nat Resour Res 30:2007–2028. https://doi.org/10.1007/s11053-021-09824-6

    Article  Google Scholar 

  • Gonfiantini R, Conrad G, Fontes J-Ch, Sauzay G, Payne B.R (1974) Étude isotopique de la nappe du Continental Intercalaire et ses relations avec les autres nappes du Sahara septentrional. Isotope Techniques in groundwater Hydrology 1974, Proceed. Symp., IAEA, Vienna, 1. pp. 227–241

  • Gouscov N (1952) Le problème hydrogéologique du bassin artésien de l’Oued Rhir In (La géologie et les problèmes de l’eau en Algérie) XIXème congrès géologique international TII 16p.

  • Guendouz A (1985) Contribution à l'étude géochimique et isotopique des nappes profondes du Sahara nord-est septentrional, Algérie. Thèse Univ. Paris-Sud, Orsay, France

  • Guendouz A, Moulla AS, Remini B (2006) Hydrochemical and isotopic behaviour of a Saharan phreatic aquifer suffering severe natural and anthropic constraints (case of Oued-Souf region Algeria). Hydrogeol J 14:955–968. https://doi.org/10.1007/s10040-005-0020-1

    Article  Google Scholar 

  • Guendouz A, Moulla AS, Edmunds WM, Zouari K, Shand P, Mamou A (2003) Hydrogeochemical and isotopic evolution of water in the Complexe Terminal aquifer in the Algerian Sahara. Hydrogeol J 11(4):483–495. https://doi.org/10.1007/s10040-003-0263-7

    Article  Google Scholar 

  • Guendouz A, Moulla AS, Edmunds WM, Shand P, Poole J, Zouari K, Mamou A (1998) Palaeoclimatic information contained in groundwaters of the Grand Erg Oriental, North Africa. Isotope techniques in the study of past and current environmental changes in the hydrosphere and the atmosphere. In: Proc. Symp. IAEA, pp. 555–571

  • Guendouz A, Reghis Z, Moulla AS (1992) Etude hydrochimique et isotopique des eaux souterraines de la cuvette de Ouargla Rap-port N° 1 65p Rapport N°2 30p

  • Guo, H., Ping, N.I., Jia, Y., Guo, Q., Jiang, Y., 2014. Types, chemical characteristics and genesis of geogenic high-arsenic groundwater in the world. Earth Science Frontiers 21 (4), 1e12 (in Chinese with English abstract). In Wen G C, Hui-Feng Y, Chun-Lei L, Yuan-Jie L, Hua B (2018) Hydrogeochemical characteristics and evolution of the aquifer systems of Gonghe Basin, Northern China, Geoscience Frontiers, Volume 9, Issue 3, 2018, Pages 907–916, https://doi.org/10.1016/j.gsf.2017.06.003

  • Guo, Q., Wang, Y., 2014. Simulation of geochemical processes affecting groundwater in quaternary porous aquifers of Taiyuan Basin: a typical Cenozoic rift basin. Earth Science Frontiers 21 (4), 83e90 (in Chinese with English abstract). In Wen G C, Hui-Feng Y, Chun-Lei L, Yuan-Jie L, Hua B (2018) Hydrogeochemical characteristics and evolution of the aquifer systems of Gonghe Basin, Northern China, Geoscience Frontiers, Volume 9, Issue 3, 2018, Pages 907–916, https://doi.org/10.1016/j.gsf.2017.06.003

  • Haddoum H (2008) Esquisse géologique de l'Afrique du Nord.

  • Hadjkouider M, Nezli IE, (2019) AIP Conference Proceedings 2123 030005 (2019) https://doi.org/10.1063/15117036

  • Hadjkouider M, Nezli IE, Hamdi AB (2017) The use of spectral responses of surface in discrimination of soil surface from remote sensing. Energy Proc 119:622–631. https://doi.org/10.1016/jegypro201707088

    Article  Google Scholar 

  • Hakimi DY, Orban P, Deschamps P, Brouyere S (2021) Hydrochemical and isotopic characteristics of groundwater in the Continental Inter-calaire aquifer system: insights from Mzab Ridge and surrounding regions North of the Algerian Sahara. J Hydrol Regional Studies 34:100791. https://doi.org/10.1016/jejrh2021100791

    Article  Google Scholar 

  • Hammad N, Djidel M, Maabedi N (2016) Cartographie des linéaments géologiques en domaine aride par extraction semi-automatique à partir d’images satellitaires : Exemple à la région d’El Kseïbat (Sahara algérien) Estudios Geológicos 72(1): e049. https://doi.org/10.3989/egeol42158377

  • International Atomic Energy Agency, Water and Environment News, Issue 4, July (1998) Water and Environment News No., IAEA, Vienna

  • Jackson TJ (2002) Remote sensing of soil moisture: Implications for groundwater recharge. Hydrogeol J 10:40–51. https://doi.org/10.1007/s10040-001-0168-2

    Article  Google Scholar 

  • Karpuz C (2004a) Discontinuity mapping with automatic lineament extraction from high resolution satellite imagery presented at the International Society for Photogrammetry and Remote Sensing XXth Congres Istanbul.

  • Karpuz C (2004b) Discontinuity mapping with automatic lineament extraction from high resolution satellite imagery, presented at the International Societyfor Photogrammetry and Remote Sensing XXth Congres, İstanbul, Türkiye, 2004b. https://hdl.handle.net/11511/79560.

  • Keller EA, Pinter N (1996) Active tectonics earthquake uplift and landscape. Prentice Hall. https://searchworks.stanford.edu/view/4764839

  • Khodja M, Canselier J P, Mimouni N, Duplay J, Akmouci T S, Ghana S (2008) Waste treatment in an Algerian oil field and perspectives of bioremediation. Conference Paper: 2nd International Conference on Engineering for Waste Valorisation At: Patras (Greece). https://www.iceht.forth.gr/en/events/2nd-international-conference-on-engineering-for-waste-valorisation-wasteeng08/

  • Khous D, Moulla AS, Cherchali MEH, Hadjer C, Belaid M, Ouarezki SA, Benchabane M (2021) Groundwater origin and quality appraisal through a combined geochemical and isotopic approach in the greater Algiers district (Algeria). Environ Earth Sci 80:716. https://doi.org/10.1007/s12665-021-10016-x

    Article  Google Scholar 

  • Kocal A, Duzgun HS, Karpuz C (2004) Discontinuity mapping with automatic lineament extraction from high resolution satellite imagery, In: Proceedings of the XX th ISPRS Congress, Istanbul, Turkey

  • Kresic N (1994) Remote sensing of tectonic fabric controlling groundwater flow in Dinaric carst In Proceedings of the 10th Thematic Conference on Geologic Remote Sensing May 9–12 1994 San Antonio Texas (pp 161–167) Environmental Research Institute of Michigan Ann Arbor MI https://www.agrisfaoorg/agris-search/searchdo?recordID=US9561516

  • Krishnamurthy JN, Venkatesa K, Jayaraman V, Manivel M (1996) An approach to demarcate groundwater potential zones through remote sensing and geographical information system. Int J Remote Sens 17:1867–1884. https://doi.org/10.1080/01431169608948744

    Article  Google Scholar 

  • Lachaine G (1999) Structures géologiques et linéaments Beauce (Québec) [Geological structures and lineaments Beauce (Quebec)] (Mémoire de maîtrise Département de géographie et télédétection Université de Sherbrooke) Lanka (nd) SAITM Research Symposium on Engineering Advancements (pp 62–65) Retrieved from http://www.dllibuomlk/handle/123/11172

  • Lloyd JW (1999) Water resources of hard rock aquifers in arid and semi-arid zones. https://unesdoc.unesco.org/ark:/48223/pf0000115939.

  • Mamou p A, Ould Baba Sy M, (2008). Étude du système aquifère de la Djeffara tuniso-libyenne. In: Managing Shared Aquifer Resources in Africa. ThirdInternational Conference Proceedings, Tripoli, Libya, 25–27 May 2008, Ed. United Nations Educational, Scientific and Cultural Organization, 2010. https://unesdoc.unesco.org/ark:/48223/pf0000188462

  • Melouah O, Pham LT (2021) Improved ILTHG method for edge enhancement of geological structures: Application to gravity data from the Oued Righ valley. J Afr Earth Sci 177:104162. https://doi.org/10.1016/jjafrearsci2021104162

    Article  Google Scholar 

  • Moulla A S, Guendouz A, Cherchali M E H (2002) Contribution des isotopes à l’étude des ressources en eaux souterraines transfrontalières en Algérie Atelier international sur la gestion partagée des ressources des systèmes aquifères en Afrique PHI UNESCO Tripoli Libye 02-04 juin 2002

  • Moulla AS, Guendouz A, Cherchali MEH, Chaid Z, Ouarezki S (2012) Updated geochemical and isotopic data from the Continental Intercalaire aquifer in the Great Occidental Erg sub-basin (south-western Algeria). Q Int 257:64–73. https://doi.org/10.1016/jquaint201108038

    Article  Google Scholar 

  • Munch Z, Conrad J (2007) Remote sensing and GIS based determination of groundwater dependent ecosystems in the Western Cape South Africa. Hydrogeol J 15:19–28. https://doi.org/10.1007/s10040-006-0125-1

    Article  Google Scholar 

  • Nabilou M, Arian M, Afzal P, Adib A, Kazemi Mehrnia A (2018) Determination of relationship between basement faults and alteration zones in Bafq-Esfordi region, central Iran. J Int Geosci Episodes 41(3):143–159. https://doi.org/10.18814/epiiugs/2018/018013

    Article  Google Scholar 

  • Nezli I E (2004) Mécanismes d'acquisition de la salinité et de la fluoruration des eaux de la nappe phréatique de la basse vallée de l'oued Mya (Ouargla) Université Badji Mokhtar [sl]: [sn]2004.

  • Oksum E, Dolmaz MN, Pham LT (2019) Inverting gravity anomalies over the Burdur sedimentary basin. SW Turkey Acta Geod Geophys 54:445–460. https://doi.org/10.1007/s40328-019-00273-5

    Article  Google Scholar 

  • OSS (2002) Une conscience de bassin-Volume-2 Hydrogeologie

  • OSS (2003) North-Western Sahara Aquifer System Joint Management of a Transboundary Basin Volume 2: Hydrogeology Sahara and Sahel Observatory (OSS) Tunis. ‘’ Système Aquifère du Sahara Septentrional Observatoire du Sahara et du Sahel Volume 2 : Hydrogéologie Projet SASS Coupes Planches Annexes Tunis Tunisie 275p Volume 4 : Modèle Mathématique Annexes Tunis Tunisie 229p’’. http://www.oss-onlineorg/sites/default/files/publications/OSS-SASS-resultats_1e_phase_Enpdf

  • Oyarzún R, Oyarzún J, Fairley PJ, Núnez J, Gomez N, Arumí LJ, Maturana H (2017) A simple approach for the analysis of the structural-geologic control of groundwater in an arid rural, mid-mountain, granitic and volcanic-sedimentary terrain: the case of the Coquimbo Region, North-Central Chile. J Arid Environ. https://doi.org/10.1016/j.jaridenv.2017.03.003

    Article  Google Scholar 

  • Patrick SJ, Coulibaly H, Honoré TJ, Naga C, Alain C, Kouadio K, Didi RM, Diedhiou SA, Savane I (2020) Groundwater exploration using extraction of lineaments from SRTM DEM and water flows in Béré region. Egypt J Remote Sens Space Sci. https://doi.org/10.1016/j.ejrs.2020.07.003

    Article  Google Scholar 

  • Petersen JO, Deschamps P, Hamelin B, Fourré E, Gonçalvès J, Zouari K, Guendouz A, Michelot JL, Massault M, Dapoigny A, Aster T (2018) Groundwater flowpaths and residence times inferred by 14C 36Cl and 4He isotopes. https://doi.org/10.1016/j.jhydrol.2018.03.003

  • Pham LT (2020) A comparative study on different filters for enhancing potential field source boundaries: synthetic examples and a case study from the Song Hong Trough (Vietnam). Arab J Geosci 13:723. https://doi.org/10.1007/s12517-020-05737-5

    Article  Google Scholar 

  • Pham LT, Eldosouky AM, Melouah OA, Bdelrahman K, Alzahrani H, Oliveira SP, Andráš P (2021a) Mapping subsurface structural lineaments using the edge filters of gravity data. J King Saud Univ-Sci 33:101594. 10. 1016/jjksus2021a101594

  • Pham LT, Nguyen DA, Eldosouky AM, Abdelrahman K, Van Vu T, Al-Otaibi N, Ibrahim E, Kharbish S (2021b) Subsurface structural mapping from high-resolution gravity data using advanced processing methods. J King Saud Univ-Sci. 101488. https://doi.org/10.1016/jjksus2021b101488

  • Raju NJ, Reddy TVK (1998) Fracture pattern and electrical resistivity studies for groundwater exploration. Environ Geol 34:175–182

    Article  Google Scholar 

  • Ramsay JG, Huber MI (1987) The techniques of modern structural geology, Vol. 2: Folds and Fractures. Pergamon Press, London

  • Riedel W (1929) Zur Mechanik geologischer Brucherscheinungen, Zentral-blatt fur Mineralogie. Geol Palaont 8:354–368

    Google Scholar 

  • Saada SA (2016) Edge detection and depth estimation of Galala El Bahariya Plateau, Eastern Desert-Egypt, from aeromagnetic data. Geomech Geophys Geoenerg Georesour 2:25–41. https://doi.org/10.1007/s40948-015-0019-6

    Article  Google Scholar 

  • Saepuloh A, Haeruddin H, Heriawan MN, Kubo T, Koike K, Malik D (2018) Application of lineament density extracted from dual orbit of synthetic aperture radar (sar) images to detecting fluids paths in the wayang windu geothermal field (west java, indonesia). Geothermics 72:145–155. https://doi.org/10.1016/j.geothermics.2017.11.010

    Article  Google Scholar 

  • Sander Per (2007) Lineaments in groundwater exploration: a review of applications and limitations. Hydrogeol J. 15:71–74. https://doi.org/10.1007/s10040-006-0138-9.

    Article  Google Scholar 

  • Sarup J, Muthukumaran M, Nitin M, Peshwa V (2006) Study of tectonics in relation to the seismic activity of the Dalvat area Nasik District Maharashtra India using remote sensing and GIS techniques. Int J Remote Sens 27(12):2371–2387. https://doi.org/10.1080/01431160500497846

    Article  Google Scholar 

  • Sehsah H, Eldosouky AM, El Afandy AH (2019) Unpaired ophiolite belts in the Neoproterozoic Allaqi-Heiani Suture the Arabian-Nubian Shield: evidences from magnetic data. J Afr Earth Sci 156:26–34. https://doi.org/10.1016/jjafrearsci201905002

    Article  Google Scholar 

  • Solomon S (2003) Remote Sensing and GIS: Applications for Groundwater Potential Assessment in Eritrea Doctoral Dissertation Royal Institute of Technology SE-100 44 Stockholm Sweden; p136

  • Sonatrach (2016) Rapport interne d’implantation du sondage -(Bkhc-1 block 438c. 2016) division exploration département bassin oued M’ya

  • Sree Devi P, Srinivasulu S, Raju K K (2001) Hydrogeomorphological and Groundwater Prospects of the Pageru River Basin by Using Remote Sensing Data. https://doi.org/10.1007/s002540100295

  • Srivastava PK, Bhattacharya AK (2006) Groundwater assessment through an integrated approach using remote sensing GIS and resistivity techniques: a case study from a hard rock terrain. Int J Remote Sens 27(20):4599–4620. https://doi.org/10.1080/01431160600589179

    Article  Google Scholar 

  • Sun Y, Yang W, Zeng X, Zhang Z (2016) Edge enhancement of potential field data using spectral moments. Geophysics 81(1):G1–G11. https://doi.org/10.1190/geo2014-0430.1

    Article  Google Scholar 

  • Sven AT (2010) Lineament interpretation short review and methodology (SSM—2010-33) Sweden https://www.stralsakerhetsmyndighetense/contentassets/b31aaf289b7047d797213babccc9921e/201033-lineament-interpretation-short-review-and-methodology

  • Takorabt M, Toubal A C, Haddoum H, Zerrouk S (2018) Determining the role of lineaments in underground hydrodynamics using Landsat 7 ETM+ data case of the Chott El Gharbi Basin (western Algeria). Arab J Geosci 11:76.https://doi.org/10.1007/s12517-018-3412-y

  • Touahri A, Hadjkouider M, Hassini M, (2019) Origin and age of the surface water and groundwater of the Ouargla basin-Algeria. https://doi.org/10.1016/jegypro201811170

  • UNESCO (1972) Projet ERESS Etude des ressources en eau du Sahara septentrional Rapport final. United Nations Educational Scientific and Cultural Organisation (UNESCO) Paris

  • Vassilas N, Perantonis S, Charou E T, Senoglou T, Stefouli M, Varoufakis S (2002) Delineation of Lineaments from Satellite data Based on Efficient Neural Network and Pattern Recognition Techniques. In: Proceedings of 2nd Hellenic Conference on AI Thessaloniki 11-12 April 2002 355-365

  • Weerasekera WL, Mayadunna BB, Senanayake IP, Dissanayake DMDOK (2014) Integrated remote sensing and GIS in lineament mapping for groundwater exploration: a case study in Ambalantota Sri Lanka. J Environ Professionals Sri Lanka 3(1):35–45. https://doi.org/10.1016/jgsf201503002

    Article  Google Scholar 

  • Well Evaluation Conference WEC (2007) Schlumberger–Sonatrach edited and published by Schlumberger Produced by Lynx Consulting, Inc., Houston, TX, USA

  • Youan MTA, Kouamé KF, Koudou A, Adja MG, Baka D, N’guessan BVH, Lasm T, Lasme OD, Jourda JP, Biemi J (2014) Apport de la Cartographie lithostructurale par imagerie satellitaire Landsat 7 à la connaissance des aquifères du socle précambrien de la région de Bondoukou Nord-Est de la Côte D’ivoire ‘’Contribution of the lithostructural mapping by Landsat 7 imagery to study the Precambrian basement aquifers in Bondoukou region (Northeast Coast Ivory) ‘’, International Journal of Innovation and Applied Studies, vol. 7, no. 3, pp. 892–910, August 201. https://www.proquest.com/scholarly-journals/apport-de-la-cartographie-lithostructurale-par/docview/1561527171/se-2

  • Youan Ta M, Lasm T, Jourda J P, Kouamé K F, Razack M, (2008) Cartographie structurale par imagerie satellitaire ETM+ de Landsat-7 et analyse des réseaux de fractures du socle précambrien de la région de Bondoukou (Nord-Est de la Côte-d’Ivoire) [Structural mapping by Landsat-7 ETM+ satellite imagery and analysis of fracture networks in the Precambrian basement of the Bondoukou region (Northeast Coast Ivory)] Revue Télédétection 8(2) 119–135 https://www.dblporg/rec/journals/rig/TaLMKB11

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

MH, IEN, AT: carried out the fieldwork, interpretation and writing of the results; MED, SD: carried out the laboratory work and drafted the generality of the article. MH, PS, AP-B: wrote the summary and the conclusion, and the verification of the results and linguistics. MH: wrote the main text of the manuscript and prepared the figures. All authors have revised the manuscript.

Corresponding author

Correspondence to Mohammed Hadj Kouider.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kouider, M.H., Dahou, M.E.A., Nezli, I.E. et al. Fractures and lineaments mapping and hydrodynamic impacts on surface and groundwater occurrence and quality in an arid region, Oued M’ya basin–Southern Sahara, Algeria. Environ Earth Sci 82, 538 (2023). https://doi.org/10.1007/s12665-023-11128-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-023-11128-2

Keywords

Navigation