Skip to main content

Advertisement

Log in

Geothermal reaction of the Seferihisar geothermal system after the Samos earthquake and geothermal energy potential of the Seferihisar geothermal system, İzmir, Türkiye

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This paper contains brief geological and hydrogeochemical information regarding hot waters circulating through the Seferihisar geothermal system using previous studies, as well as recorded and up-to-date data. The obtained analytical results were subjected to the computer programme AquaChem3.70 for determining the geothermal waters. The NaCl-type geothermal waters circulating in the system have a temperature range of 44 to 207 °C, with total dissolved solids (TDS) varying from 3229 to 29494.9 mg/l. The conductivity range of the samples is 5690–34400 µS/cm as the pH changes from 6.54 to 8.5. Chemical geothermometer calculations indicate reservoir temperatures varying between 59 and 246.2 °C. The water‒rock interactions led to various mineralogical changes in the area. X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray (XRD and SEM–EDX) analyses of the collected rock and clay samples have been interpreted as an integrant to the 2-year field observations. The results of the analyses show that the surface manifestations in the Tuzla and Doğanbey geothermal fields consist of the hydrothermal alteration products induced from the carbonates of sediments, ferromagnesian minerals of greenschist facies and silicates. Additionally, a uranium-oxide mineral, richetite, has been identified. Finally, the apparent geothermal potential of the system has been assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The author confirm that the data supporting the findings of this study are available within the article.

References

  • Akkuş I, Akıllı H, Ceyhan S, Dilemre A, Tekin Z (2005) Türkiye Jeotermal Kaynaklar Envanteri, Inventory Serie: 201, MTA, Ankara

  • Akyüz A, Baytorun AN, Çaylı A, Üstün S, Önder D (2017) Seralarda ısıtma sistemlerinin projelenmesinde gerekli olan ısı gücünün belirlenmesinde yeni yaklaşımlar. KSU J Nat Sci 20(3):209–217 (Article in Turkish with an abstract in English)

    Google Scholar 

  • Alacalı M (2022) Potential geosites of Seferihisar geothermal system and Doğanbey Geopark—a proposal project, 74th Geological Congress of Türkiye, with international participation, April 11–15, 2022, Ankara, Türkiye

  • Arnórsson S, Gunnglaugsson E, Svavarsson H (1983) The chemistry of geothermal waters in Iceland. III. Chemical geothermometry in geothermal investigations. Geochimica et osmochimica Acta 47:567–577

    Article  Google Scholar 

  • Aydın İ, Karat Hİ, Koçak A (2005) Curie-depth map of Türkiye. Geophys J Int 162:633–640. https://doi.org/10.1111/j.1365-246X.2005.02617.x

    Article  Google Scholar 

  • Aydın M, Şengün R, Tut Haklıdır FS (2022) Potential assessment of lithium extraction from geothermal reservoirs. In: Proceedings, 47th workshop on geothermal reservoir engineering, Stanford University, Stanford, California, February 7–9, 2022, SGP-TR-223

  • Baba A, Sözbilir H (2012) Source of arsenic based on geological and hydrogeochemical properties of geothermal systems in Western Türkiye. Chem Geol 334:364–377

    Article  Google Scholar 

  • Bakak Ö, Özel E, Ergün M (2015) Geothermal potential of the Sığacık Gulf (Seferihisar) and preliminary investigations with seismic and magnetic surveys. Elsevier Energy Procedia 76:230–239. https://doi.org/10.1016/j.egypro.2015.07.909

    Article  Google Scholar 

  • Bakraç S (2009) Seferihisar CM-4 jeotermal kuyusu tamamlama testleri. MTA Genel Müdürlüğü, Rapor No: (unpublished)

  • Baytorun AN, Gügercin Ö (2018) Seralarda ısıtma kazan kapasitelerinin belirlenmesi ve dikkate alınacak kriterler. Çukurova J. Agric. Food Sci. 33(1):77–86 (Article in Turkish with an abstract in English)

    Google Scholar 

  • Browne PRL (1978) Hydrothermal alterations in active geothermal fields. Ann Rev Earth Planet Sci 6:229–248. https://doi.org/10.1146/annurev.ea.06.050178.001305

    Article  Google Scholar 

  • Bulut M (2013) A new medium to high enthalpy geothermal field in Aegean region (Akyar) Menderes- Seferihisar-İzmir, Western Anatolia, Türkiye. Bull Miner Res Explor 147:153–167

    Google Scholar 

  • Calmbach L (1997) AquaChem computer code-version 3.7.42, Waterloo hydrogeologic. Waterloo, Ontario, Canada, N2L 3L3

  • Canbolat A (1987) Seferihisar jeotermal sondajları Bitirme Raporları (Tuzla-1, G-2A, G-3, G3-A, G-12A, G-17A). MTA Genel Müdürlüğü (unpublished)

  • Çengel YA, Boles MA, Kanoğlu M (2019) Thermodynamics: an engineering approach. McGraw Hill, New York

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1966) An introduction to the rock forming minerals

  • Dilsiz C, Marques JM, Carreira PMM (2004) The impact of hydrological changes on travertine deposits related to thermal springs in the Pamukkale area (SW Türkiye). Environ Geol 45:808–817. https://doi.org/10.1007/s00254-003-0941-8

    Article  Google Scholar 

  • Emre Ö, Özalp S, Doğan A, Özaksoy V, Yıldırım C, Göktaş F (2005) İzmir yakın çevresinin diri fayları ve deprem potansiyelleri, MTA Report No: 10754

  • Erdoğan B (1990) İzmir-Ankara Zonu’nun, İzmir ile Seferihisar arasındaki bölgede stratigrafik özellikleri ve tektonik evrimi. Turkish Association of Petroleum Geologists (TPJD) Bulletin 2:1–20 (in Turkish)

    Google Scholar 

  • Eşder T, Şimşek Ş (1975) Geology of İzmir (Seferihisar) geothermal area, Western Anatolia of Türkiye: determination of reservoirs by means of gradient drilling, Proceedings of 2nd UN. Symposium, 1975, pp:349–361

  • Eşder T (1988) Gümüldür-Cumaovası (İzmir) alanının jeolojisi ve jeotermal enerji olanaklarının araştırılması. Doktora Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü Jeoloji Mühendisliği Bölümü Anabilim Dalı, 401 p (unpublished)

  • Fournier RO (1979) A revised equation for the Na-K geothermometer. Geothermal Res Council Trans 3:221–224

    Google Scholar 

  • Fournier RO (1977) A review of chemical and isotopic geothermomers for geothermal systems. In: Proceedings of the symp. on geoth. energy, Cento Scientific Programme, Ankara, pp:133–143

  • Franco A, Donatini F (2016) Methods for the estimation of the energy stored in geothermal reservoirs, 34th UIT Heat Transfer Conference, IOP Conf. Series: Journal of Physics: Conf. Series 796 (2017) 012025.https://doi.org/10.1088/1742-6596/796/1/012025

  • Frondel C (1958) Systematic mineralogy of Uranium and Thorium, Geological Survey of Bulletin 1064, United States Government Printing Office, Washington

  • Gemici Ü, Filiz Ş (2001) Hydrochemistry of the Çeşme geothermal area. Türkiye J Volcanol Geotherm Res 110:171–188

    Article  Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim Cosmochim Acta 52(12):2749–2765. https://doi.org/10.1016/0016-7037(88)90143-3

    Article  Google Scholar 

  • Giggenbach WF, Gonfiantini R, Jangi BL, Truesdell AH (1983) Isotopic and chemical composition of Parbati Valley geothermal discharges, NW Himalaya, Indiana. Geothermics 12(2–3):199–222. https://doi.org/10.1016/0375-6505(83)90030-5

    Article  Google Scholar 

  • Göktaş F (2019) Stratigraphy of the Neogene Sedimentation and Volcanism in Çubukludağ Basin, Western Anatolia. Geol Bull Turkey 62(2019):63–98. https://doi.org/10.25288/tjb.521497

    Article  Google Scholar 

  • Google Earth (2014) Way Out TV, Inc., Santa Monica, CA

  • Hamilton WJ (1842) Researches in Asia Minor, Pontus and Armenia, with some account of their antiquities and geology, V2. John Murray, Albemarle Street, London

    Google Scholar 

  • Hauksson T, PÛrhallsson S, Gunnlaugsson E, Albertsson A (1995) Control of magnesium silicate scaling in district heating systems. World Geothermal Congress, pp. 2487–2490

  • Havuz F (2012) Technologic and economic analysis of geothermal greenhousing in Türkiye, Institute of Science and Technology, Gazi University (in Turkish)

  • IAH (1979) Comission of mineral and thermal waters, Map of Mineral and thermal water of Europe. Scale 1:500,000. International Association of Hydrogeologists. United Kingdom

  • Işıntek İ, Savaş F, (2022) Structures and Petrographic Properties of Travertine Occurrences in Doğanbey and Karakoç Thermal Baths and Tuzla Geothermal Area (Seferihisar, İzmir, Western Turkey), 74th Geological Congress of Turkey with international participation April 11–15, 2022, Ankara, Turkey

  • Karamanderesi İH (2013) Characteristics of geothermal reservoirs in Türkiye. IGA Academy Report 0102-2013

  • Kharaka YK, Mariner RH (1989) Chemical geothermometers and their application to formation waters from sedimentary basins. In: Naeser ND, McCulloh TH (eds) Thermal History of Sedimentary Basins. Springer, New York. https://doi.org/10.1007/978-1-4612-3492-0_6

    Chapter  Google Scholar 

  • Kharaka Y, Lico MS, Law LM (1982) Chemical geothermometers applied to formation waters, Gulf of Mexico and California Basins. Am Assoc Petrol Geol Bull 66:558

    Google Scholar 

  • Kharaka YK, Gunter WD, Aggarwal PK, Perkins EH, DeBraal JD (1988) Solmineq.88: a computer program for geochemical modeling of water-rock interactions. U.S. Geological Survey, Water-Resources Investigations Report 88-4227

  • Miranda R, Latour I, Blanco A (2021) Silica removal from a paper mill effluent by adsorption on pseudoboehmite and γ-Al2O3. Water 13(15):2031

    Article  Google Scholar 

  • Muffler P, Cataldi R (1978) Methods for regional assessment of geothermal resources. Geothermics 7:53–89. https://doi.org/10.1016/0375-6505(78)90002-0

    Article  Google Scholar 

  • Özer C, Polat O (2017) Investigation of 1-D (One-Dimensional) seismic velocity structure of Izmir and surroundings. DEU J Sci Eng. https://doi.org/10.21205/deufmd.2017195512

    Article  Google Scholar 

  • Piper AM (1944) A graphic procedure in geochemical interpretation of water analyses. Am Geophys Union Trans 25:914–923. https://doi.org/10.1029/TR025i006p00914

    Article  Google Scholar 

  • Plášil J (2017) Crystal structure of richetite revisited: Crystallographic evidence for the presence of pentavalent uranium. Am Miner 102(9):1771–1775. https://doi.org/10.2138/am-2017-6092

    Article  Google Scholar 

  • Satman A, Serpen U, Onur M, Aksoy N (2005) A Study on the Production and Reservoir Performance of Balcova-Narlidere Geothermal Field. In: Proceedings World Geothermal Congress 2005 Antalya, Turkey, 24–29 April 2005

  • Serpen Ü (2004) Hydrogeological investigations on Balçova geothermal system in Türkiye. Geothermics 33:309–335. https://doi.org/10.1016/j.geothermics.2003.08.011

    Article  Google Scholar 

  • Simmons SF (2002) Geochemistry Lecture Notes 2002, Semester I, Geotherm 601, 602, 603, Geothermal Energy Technology Course, Geothermal Institute, University of Auckland, New Zealand

  • Sözbilir H, Uzel B, Sümer Ö, İnci U, Ersoy EY, Koçer T, Demirtaş R, Özkaymak Ç (2008) Evidence for a kinematically linked E-W trending İzmir Fault and N-E trending Seferihisar Fault. Kinematic and paleoseismological studies carried out on active faults forming the İzmir Bay, Western Anatolia. Geol Bull Türkiye 56(2):91–114 (article in Turkish with an abstract in English)

    Google Scholar 

  • Sözbilir H, Özkaymak Ç, Sümer Ö, Uzel B, Softa M, Eski S, Spencer JQG, Şahiner E, Meriç N (2021) First Paleoseismological Findings From Northeast Trending Strike Slip Faults Segments of İzmir Balıkesir Transfer Zone: Seferihisar Fault as an Example, 73rd Geological Congress Of Türkiye, May 24–28, 2021, Ankara

  • Tarcan G, Gemici Ü (2003) Water geochemistry of the Seferihisar geothermal area, Izmir, Türkiye. J Volcanol Geoth Res 126:225–242. https://doi.org/10.1016/S0377-0273(03)00149-5

    Article  Google Scholar 

  • Toygar AA (2012) Seferihisar ve Balçova jeotermal alanlarında ve çevre akiferlerinde akışkan akımın modellenmesi. PhD, İzmir Dokuz Eylül University, İzmir, Türkiye

  • Truesdell AH (1976) Summary of section III geochemical techniques in exploration. In: Proceedings, Second United Nations Symposium on the Development and Use of Geothermal Resources. San Francisco, 1975, Vol. 1, Washington D.C., U. S. Government Printing Office, ıiii–ıxxxix

  • U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation, Final environmental statement related to operation of Lasalle county station units 1 and 2, Commonwealth Edison Company, Docket Nos. 50-373 & 50-374 Published: November 1978

  • Ueckert M, Wismeth C, Baumann T (2020) Crystallization of calcium carbonate in a large-scale push–pull heat storage test in the Upper Jurassic carbonate aquifer. Geotherm Energy 8:7. https://doi.org/10.1186/s40517-020-0160-5

    Article  Google Scholar 

  • Uzel B, Sözbilir H (2008) A first record of strike-slip basin in Western Anatolia and its tectonic implication: the Cumaovası Basin. Turkish J Earth Sci 17:559–591

    Google Scholar 

  • Vaes JF (1947) Six nouveax minéraux d’urane provenant de Shinkolobwe (Katanga). Annal Soc Géol Belg 70:212–225

    Google Scholar 

  • Vengosh A, Helvacı C, Karamanderesi İH (2002) Geochemical constraints for the origin of thermal waters from western Türkiye. Appl Geochem 17:163–183. https://doi.org/10.1016/S0883-2927(01)00062

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Seferihisar Municipality-İsmail YETİSKİN, the Mayor and Küçük Menderes A.Ş. for providing a part of the hydrogeochemical data, Associate Professor Emre TİMUR (Dokuz Eylül University) for E-field measurement and special thanks are due to anonymous reviewers and the editor for their helpful comments and suggestions in an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The corresponding author did the whole field work (including monitoring) and literature study, collected samples, had the clay and rock samples analyzed, interpreted the results, prepared figures and tables, wrote the main manuscript.

Corresponding author

Correspondence to Mine Alacali.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alacali, M. Geothermal reaction of the Seferihisar geothermal system after the Samos earthquake and geothermal energy potential of the Seferihisar geothermal system, İzmir, Türkiye. Environ Earth Sci 82, 354 (2023). https://doi.org/10.1007/s12665-023-11044-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-023-11044-5

Keywords

Navigation