Skip to main content
Log in

Distribution of soil gas radon concentration in north-eastern Sicily (Italy): hazard evaluation and tectonic implications

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Radon measurements in soil gases were carried out along the Tyrrhenian margin of north-eastern Sicily (southern Apennines of Italy), one of the most tectonically and seismically active areas within the central Mediterranean region. The collected data highlight an ~ NW–SE oriented zone located to the south of the Milazzo Peninsula marked by intense soil radon degassing. Concentrations of 222Rn and 220Rn were derived to be in the range of 0.69–81.3 kBq m−3 and 2.63–123.48 kBq m−3, respectively. The widespread radon release seems to be induced by the uprising of deep-originated fluids along faults and joints, and it is favoured by the high permeability of the outcropping alluvial Quaternary sediments. Moreover, the potential tectonic structure promoting the soil radon degassing may act as the “silent” on-land prolongation of the Vulcano-Milazzo fault zone (VMFZ), a transtensional tectonic element located in the Gulf of Patti and belonging to the Aeolian–Tindari–Letojanni System (ATLFS). The collected results are in accordance with previous studies showing the close relationship between regional degassing and tectonic activity. Periodical and continuous monitoring of radon emission over the area is considered of basic importance to better assess the radiological/health hazard for the population, which in this study was primarily evaluated from low to moderate in terms of first-level screening, as well as in view of possible development of the seismogenic process that can intensify the releasing of endogenous fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data generated during this study are included in Tables 2, 3 and 4.

References

  • Al-Hilal M, Abdul-Wahed MK (2018) Soil gas radon measurements for investigating the actual status of seismic quiescence along the bounding fault of the Ghab pull-apart basin in western Syria. Geofís Int 57(3):177–187. https://doi.org/10.22201/igeof.00167169p.2018.57.3.2110

  • Barnet I, Pacherova P, Neznal M (2008) Radon in geological environment—Czech experience Czech Geological Survey 19:19–28.

  • Barreca G, Scarfì L, Gross F, Monaco M, De Guidi G (2019) Fault pattern and seismotectonic potential at the south-western edge of the Ionian Subduction System (southern Italy): New field and geophysical constraints. Tectonophysics 761:31–45. https://doi.org/10.1016/j.tecto.2019.04.020

    Article  Google Scholar 

  • Barreca G, Gross F, Scarfì L, Aloisi M, Monaco C, Krastel S (2021) The Strait of Messina: Seismotectonics and the source of the 1908 earthquake. Earth Sci Rev 218:103685. https://doi.org/10.1016/j.earscirev.2021.103685

  • Baubron JC, Rigo A, Toutain JP (2002) Soil gas profiles as a tool to characterize active tectonic areas: the Jaut Pass example (Pyrenees, France). Earth Planet Sci Lett 196:69–81. https://doi.org/10.1016/S0012-821X(01)00596-9

    Article  Google Scholar 

  • Beaubien SE, Ciotoli G, Lombardi S (2003) Carbon dioxide and radon gas hazard at the Alban hill area (Central Italy). J Volcanol Geotherm Res 123:63–80. https://doi.org/10.1016/S0377-0273(03)00028-3

    Article  Google Scholar 

  • Billi A, Barberi G, Faccenna C, Neri G, Pepe F, Sulli A (2006) Tectonics and seismicity of the Tindari Fault System, southern Italy: crustal deformations at the transition between ongoing contractional and extensional domains located above the edge of a subducting slab. Tectonics 25(2): TC2006. https://doi.org/10.1029/2004TC001763

  • Bini G, Chiodini G, Lucchetti C, Moschini P, Caliro S, Mollo S, Selva J, Tuccimei P, Galli G, Bachmann O (2020) Deep versus shallow sources of CO2 and Rn from a multi-parametric approach: the case of the Nisyros caldera (Aegean Arc, Greece). Sci Rep 10:13782. https://doi.org/10.1038/s41598-020-70114-x

    Article  Google Scholar 

  • Bivand RS, Pebesma EJ, Gómez-Rubio V (2008) Applied spatial data analysis with R. Springer, New York

    Google Scholar 

  • Bossew P, Dubois G, Tollefsen T (2008) Investigations on indoor Radon in Austria, part 2: geological classes as categorical external drift for spatial modeling of the Radon potential. J Environ Radioact 99:81–97. https://doi.org/10.1016/j.jenvrad.2007.06.013

    Article  Google Scholar 

  • Bossew P, Cinelli G, Ciotoli G, Crowley Q, De Cort M, Elío J, Gruber V, Petermann E, Tollefsen T (2020) Development of a geogenic radon hazard index—concept, history, experiences. Int J Environ Res Public Health 17:4134. https://doi.org/10.3390/ijerph17114134

    Article  Google Scholar 

  • Carbone S, Messina A, Lentini F, Macaione E (2011) Carta Geologica d’Italia alla Scala 1:50.000, Foglio 587 Milazzo e 600 Barcellona Pozzo di Gotto, e Note Illustrative. ISPRA-Regione Siciliana, S.EL.CA., Firenze, Italy.

  • Castelluccio M (2011) Soil radon concentration survey in Caffarella Valley test site (Rome). Ph.D. Thesis in Geodynamics at the “Roma Tre” University.

  • Catalano S, De Guidi G, Monaco C, Tortorici G, Tortorici L (2008) Active faulting and seismicity along the Siculo-Calabrian Rift Zone (Southern Italy). Tectonophysics 453(1–4):177–192. https://doi.org/10.1016/j.tecto.2007.05.008

    Article  Google Scholar 

  • Cinelli G, Tositti L, Capaccioni B, Brattich E, Mostacci D (2015) Soil gas radon assessment and development of a radon risk map in Bolsena, Central Italy. Environ Geochem Health 37:305–319. https://doi.org/10.1007/s10653-014-9649-9

    Article  Google Scholar 

  • Ciotoli G, Guerra M, Lombardi S, Vittori E (1998) Soil gas survey for tracing seismogenic faults: a case study in the Fucino Basin, Central Italy. J Geophys Res 103:23781–23794. https://doi.org/10.1029/98JB01553

    Article  Google Scholar 

  • Ciotoli G, Etiope G, Guerra M, Lombardi S (1999) The detection of concealed faults in the Ofanto basin using the correlation between soil gas fracture surveys. Tectonophysics 299:321–332. https://doi.org/10.1016/S0040-1951(98)00220-0

    Article  Google Scholar 

  • Ciotoli G, Lombardi S, Morandi S, Zarlenga F (2005) A multidisciplinary statistical approach to study the relationships between helium leakage and neotectonic activity in a gas province: The Vasto Basin, Abruzzo-Molise (central Italy). AAPG Bull 88(3):355–372. https://doi.org/10.1306/10210303001

    Article  Google Scholar 

  • Ciotoli G, Lombardi S, Annunziatellis A (2007) Geostatistical analysis of soil gas data in a high seismic intermontane basin: Fucino Plain, central Italy. J Geophys Res 112:B05407. https://doi.org/10.1029/2005JB004044

    Article  Google Scholar 

  • Cirrincione R, Fazio E, Fiannacca P, Ortolano G, Pezzino A, Punturo R (2015) The Calabria-Peloritani Orogen, a composite terrane in Central Mediterranean; its overall architecture and geodynamic significance for a pre-Alpine scenario around the Tethyan basin. Period Mineral 84(3B):701–749. https://doi.org/10.2451/2015PM0446

    Article  Google Scholar 

  • Cultrera F, Barreca G, Burrato P, Ferranti L, Monaco C, Passaro S, Pepe F, Scarfì L (2017a) Active faulting and continental slope instability in the Gulf of Patti (Tyrrhenian side of NE Sicily, Italy): a field, marine and seismological joint analysis. Nat Hazards 86:253–272. https://doi.org/10.1007/s11069-016-2547-y

    Article  Google Scholar 

  • Cultrera F, Barreca G, Ferranti L, Monaco C, Pepe F, Passaro S, Barberi G, Bruno V, Burrato P, Mattia M, Musumeci C Scarfì L (2017b) Structural architecture and active deformation pattern in the northern sector of the Aeolian-Tindari-Letojanni fault system (SE Tyrrhenian Sea-NE Sicily) from integrated analysis of field, marine geophysical, seismological and geodetic data. Ital J Geosci 136(3):399-417. https://doi.org/10.3301/IJG.2016.17

  • D'Alessandro W, Brusca L, Cinti D. Gagliano AL, Longo M, Pecoraino G, Pfanz H, Pizzino L, Raschi A Voltattorni N (2018) Carbon dioxide and radon emissions from the soils of Pantelleria island (Southern Italy). J Volcanol Geotherm Res 362:49-63. https://doi.org/10.1016/j.jvolgeores.2018.08.007

  • Darby S, Hill D, Deo H, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, Falk R, Farchi S, Figueiras A, Hakama M, Heid I, Hunter I, Kreienbrock L, Kreuzer M, Lagarde F, Makelainen I, Muirhead C, Oberaigner W, Pershagen G, Ruosteenoja E, Rosario AS, Tirmache M, Tomasek L, Whitley E, Wichmann HE, Doll R (2006) Residential radon and lung cancer- detailed results of a collaborative analysis of individual data on 7148 persons with lung cancer and 14,208 persons without lung cancer from 13 epidemiologic studies in Europe. Scand J Work Environ Health 32(1):1–83

    Google Scholar 

  • De Astis G, La Volpe L, Peccerillo A, Civetta L (1997) Volcanological and petrological evolution of Vulcano island (Aeolian Arc, southern Tyrrhenian Sea). J Geophys Res 102(B4):8021–8050. https://doi.org/10.1029/96JB03735

    Article  Google Scholar 

  • De Guidi G, Lanzafame G, Palano M, Puglisi G, Scaltrito A, Scarfì L (2013) Multidisciplinary study of the Tindari Fault (Sicily, Italy) separating ongoing contractional and extensional compartments along the active Africa-Eurasia convergent boundary. Tectonophysics 588:1–17. https://doi.org/10.1016/j.tecto.2012.11.021

    Article  Google Scholar 

  • Directive 2013/59/EURATOM. Laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom, 2013

  • Doglioni C, Barba S, Carminati E, Riguzzi F (2014) Fault on v-off versus coseismic fluids reaction. Geosci Front 5:767–780. https://doi.org/10.1016/j.gsf.2013.08.004

    Article  Google Scholar 

  • Dubois G, Bossew P (2006) From babel to the round table of Camelot: on setting up a common language and objective for European radon risk mapping. Part I. Radon risk maps, different maps for different purposes. In: I. Barnet, M. Neznal and P. Pacherova (ed) Proceedings of the 8th international workshop on the geological aspect of radon risk mapping, Prague, Czech Republic.

  • Durridge Company. RAD 7, electronic radon detector user manual (2018). http://durridge.com

  • Elío J, Ortega MF, Nisi B, Mazadiego LF, Vaselli O, Caballero J, Grandia F (2015) CO2 and Rn degassing from the natural analog of Campo de Calatrava (Spain): implications for monitoring of CO2 storage sites. Int J Greenh Gas Control 32:1–14. https://doi.org/10.1016/j.ijggc.2014.10.014

    Article  Google Scholar 

  • Elío J, Crowley Q, Scanlon R, Hodgson J, Long S (2019a) Rapid radon potential classification using soil-gas radon measurements in the Cooley Peninsula, County Louth. Ireland Environ Earth Sci 78:359. https://doi.org/10.1007/s12665-019-8339-4

    Article  Google Scholar 

  • Elío J, Cinelli G, Bossew P, Gutiérrez-Villanueva JL, Tollefsen T, De Cort M, Nogarotto A, Braga R (2019b) The first version of the Pan-European Indoor Radon Map. Nat Hazards Earth Syst Sci 19:2451–2464. https://doi.org/10.5194/nhess-19-2451-2019

    Article  Google Scholar 

  • Etiope G, Martinelli G (2002) Migration of carrier and trace gases in the geosphere: an overview. Phys Earth Planet Inter 129(3–4):185–204. https://doi.org/10.1016/S0031-9201(01)00292-8

    Article  Google Scholar 

  • Faccenna C, Piromallo C, Crespo-Blanc A, Jolivet L, Rossetti F (2004) Lateral slab deformation and the origin of western Mediterranean arcs. Tectonics 23:TC1012. https://doi.org/10.1029/2002TC001488

  • Gasparini C, Iannaccone G, Scarpa R (1985) Fault-plane solutions and seismicity of the Italian peninsula. Tectonophysics 117:59–78. https://doi.org/10.1016/0040-1951(85)90236-7

    Article  Google Scholar 

  • Gasparini C, Iannacone G, Scandone P Scarpa R (1982) Seismotectonics of the Calabrian Arc. Tectonophysics 82:267-286. https://doi.org/10.1016/0040-1951(82)90163-9

  • Gianelli G (1985) On the origin of geothermal CO2 by metamorphic processes. Boll Soc Geol Ital 104:575–584

    Google Scholar 

  • Giustini F, Ciotoli G, Rinaldini A, Ruggiero L, Voltaggio M (2019) Mapping the geogenic radon potential and radon risk by using Empirical Bayesian Kriging regression: a case study from a volcanic area of central Italy. Sci Total Environ 661:449–464. https://doi.org/10.1016/j.scitotenv.2019.01.146

    Article  Google Scholar 

  • Giustini F, Ruggiero L, Sciarra A, Beaubien SE, Graziani S, Galli G, Pizzino L, Tartarello MC, Lucchetti C, Sirianni P, Tuccimei P, Voltaggio M, Bigi S, Ciotoli G (2022) Radon HAZARD in Central Italy: comparison among areas with different geogenic radon potential. Int J Environ Res Public Health 19:666. https://doi.org/10.3390/ijerph19020666

    Article  Google Scholar 

  • Huxol S, Brennwald MS, Henneberger R, Kipfer R (2013) 220Rn/222Rn Isotope Pair as a Natural Proxy for Soil Gas Transport. Environ Sci Technol 47:14044–14050. https://doi.org/10.1021/es4026529

    Article  Google Scholar 

  • INGV earthquakes catalogue, http://terremoti.ingv.it

  • Iovine G, Guagliardi I, Bruno C, Greco R, Tallarico A, Falcone G, Lucà F, Buttafuoco G (2018) Soil-gas radon anomalies in three study areas of central-northern Calabria (southern Italy). Nat Hazards 91:193–219. https://doi.org/10.1007/s11069-017-2839-x

    Article  Google Scholar 

  • ISTAT, 2019 Istituto Nazionale di Statistica. http://www.istat.it

  • Italian Legislation, D. Lgs. 101/2020

  • Italiano F, Martinelli G, Plescia P (2008) CO2 Degassing over seismic areas: the role of mechanochemical production at the study case of central apennines. Pure Appl Geophys 165:75–94. https://doi.org/10.1007/s00024-007-0291-7

    Article  Google Scholar 

  • Italiano F, Bonfanti P, Maugeri SR (2019) Evidence of tectonic control on the geochemical features of the volatiles vented along the Nebrodi-Peloritani Mts(Southern Apennine Chain, Italy). Geofluids 2019:6250393. https://doi.org/10.1155/2019/6250393

    Article  Google Scholar 

  • Kemski J, Siehl A, Stegemann R, Valdivia-Manchego M (2001) Mapping the geogenic radon potential in Germany. Sci Total Environ 272:217–230. https://doi.org/10.1016/S0048-9697(01)00696-9

    Article  Google Scholar 

  • King CY, Zhang W, King BS (1993) Radon anomalies on three kinds of faults in California. Pure Appl Geophys 141:111–124. https://doi.org/10.1007/BF00876238

    Article  Google Scholar 

  • King CY, King BS, Evans WC, Zhang W (1996) Spatial radon anomalies on active faults in California. Appl Geochem 11:497–510. https://doi.org/10.1016/0883-2927(96)00003-0

    Article  Google Scholar 

  • Kissin IG, Pakhomov SI (1969) Geochemistry of Carbon Dioxide in Deep Zones of the Underground Hydrosphere. Geokhimiya Year 1969(4):460–471

  • Krewski D, Lubin JH, Zielinski JM, Alavanja M, Catalan VS, Field RW, Klotz JB, Letourneau EG, Lynch CF, Lyon JL, Sandler DP, Schoenberg JB, Steck DJ, Stolwijk JA, Weinber C, Wilcox HB (2006) A combined analysis of North American case-control studies of residential radon and lung cancer. J Toxicol Environ Health 69(7):533–597. https://doi.org/10.1080/15287390500260945

    Article  Google Scholar 

  • Kristiansson K, Malmqvist L (1987) Trace elements in the geogas and their relation to bedrock composition. Geoexploration 24:517–553. https://doi.org/10.1016/0016-7142(87)90019-6

    Article  Google Scholar 

  • Lentini F, Carbone S, Grasso M, Di Stefano A, Romeo M, Messina A (2000) Carta Geologica della Provincia di Messina 1:50.000, e Note Illustrative. S.EL.CA. Firenze, Italy.

  • Lucchi F, Tranne CA, De Astis G, Keller J, Losito R, Morche W (2008) Stratigraphy and significance of Brown Tuffs on the Aeolian Islands (southern Italy). J Volcanol Geotherm Res 177:49–70. https://doi.org/10.1016/j.jvolgeores.2007.11.006

    Article  Google Scholar 

  • Malinverno A, Ryan WBF (1986) Extension in the tyrrhenian sea and shortening in the apennines as result of arc migration driven by sinking of the lithosphere. Tectonics 5(2):227–245. https://doi.org/10.1029/TC005i002p00227

    Article  Google Scholar 

  • Mollo S, Tuccimei P, Heap MJ, Vinciguerra S, Soligo M, Castelluccio M, Scarlato P, Dingwell DB (2011) Increase in radon emission due to rock failure: an experimental study. Geophys Res Lett 38:L14304. https://doi.org/10.1029/2011GL047962

    Article  Google Scholar 

  • Muir Wood R (1994) Earthquakes, strain-cycling and the mobilization of fluids. Geol Soc Lond Spec Publ 78:85–98. https://doi.org/10.1144/GSL.SP.1994.078.01.08

    Article  Google Scholar 

  • Muir Wood R, King GCP (1993) Hydrologic signatures of earthquake strain. J Geophys Res 98:22035–22068. https://doi.org/10.1029/93JB02219

    Article  Google Scholar 

  • Neznal M, Neznal N, Matolin M, Barnet I, Miksova J (2004) The New Method for Assessing the Radon Risk of Building Sites. In: Czech Geol. Survey Special Papers, 16. Czech Geological Survey, Prague, Czech Republic.

  • Nguyen-Thuy D, Nguyen-Van H, Schimmelmann JP, Nguyen NTA, Doiron K, Schimmelmann A (2019) 220Rn (Thoron) geohazard in room air of earthen dwellings in Vietnam. Geofluids 2019:7202616. https://doi.org/10.1155/2019/7202616

    Article  Google Scholar 

  • PAI (Piano Assetto Idrogeologico), Sicilian Region, http://www.sitr.regione.sicilia.it/pai.

  • Palano M, Schiavone D, Loddo M, Neri M, Presti D, Quarto R, Totaro C, Neri G (2015) Active upper crust deformation pattern along the southern edge of the Tyrrhenian subduction zone (NE Sicily): Insights from a multidisciplinary approach. Tectonophysics 657:205–218. https://doi.org/10.1016/j.tecto.2015.07.005

    Article  Google Scholar 

  • Palano M, Ferranti L, Monaco C, Mattia M, Aloisi M, Bruno V, Cannavò F. Siligato G (2012) GPS velocity and strain fields in Sicily and southern Calabria, Italy: Updated geodetic constraints on tectonic block interaction in the central Mediterranean. J Geophys Res 117:B0740. https://doi.org/10.1029/2012JB009254

  • Pasculli A, Palermi S, Sarra A, Piacentini T, Miccadei E (2014) A modelling methodology for the analysis of radon potential based on environmental geology and geographically weighted regression. Environ Model Softw 54:165–181. https://doi.org/10.1016/j.envsoft.2014.01.006

    Article  Google Scholar 

  • Pondrelli A, Piromallo C, Serpelloni E (2004) Convergence vs. retreat in Southern Tyrrhenian Sea: insights from kinematics. J Geophys Res 31:L06611. https://doi.org/10.1029/2003GL019223

  • Rovida A, Camassi R, Gasperini P, Stucchi M (2011) CPTI11, the 2011 version of the Parametric Catalogue of Italian Earthquakes. Istituto Nazionale di Geofisica e Vulcanologia (INGV). http://emidius.mi.ingv.it/CPTI11

  • Rovida A, Locati M, Camassi R, Lolli B, Gasperini P (2016) CPTI15, version 2.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV). http://emidius.mi.ingv.it/CPTI15-DBMI15

  • Sciarra A, Fascetti A, Moretti A, Cantucci B, Pizzino L, Lombardi S, Guerra I (2015) Geochemical and radiometric profiles through an active fault in the Sila Massif (Calabria, Italy). J Geochem Explor 148:128–137. https://doi.org/10.1016/j.gexplo.2014.08.015

    Article  Google Scholar 

  • Sciarra A, Mazzini A, Inguaggiato S, Vita F, Lupi M, Hadi S (2018) Radon and carbon gas anomalies along the Watukosek Fault System and Lusi mud eruption, Indonesia. Mar Pet Geol 90:77–90. https://doi.org/10.1016/j.marpetgeo.2017.09.031

    Article  Google Scholar 

  • Scicchitano G, Spampinato CR, Ferranti L, Antonioli F, Monaco C, Capano M, Lubritto C (2011) Uplifted holocene shorelines at Capo Milazzo (NE Sicily, Italy): Evidence of co-seismic and steady-state deformation. Quat Int 232:201–213. https://doi.org/10.1016/j.quaint.2010.06.028

    Article  Google Scholar 

  • Scognamiglio L, Tinti E, Quintiliani M (2006) Time Domain Moment Tensor (TDMT) Data set. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/TDMT

  • Seront B, Wong TF, Caine JS, Forster CB, Bruhn RL (1998) Laboratory characterisation of hydromechanical properties of a seismogenincal fault system. J Struct Geol 20:865–881. https://doi.org/10.1016/S0191-8141(98)00023-6

    Article  Google Scholar 

  • Sinclair AJ (1974) Selection of threshold values in geochemical data using probability graphs. J Geochem Explor 3:129–149. https://doi.org/10.1016/0375-6742(74)90030-2

    Article  Google Scholar 

  • Sinclair AJ (1991) A fundamental approach to threshold estimation in exploration geochemistry: probability plots revisited. J Geochem Explor 41:1–22. https://doi.org/10.1016/0375-6742(91)90071-2

    Article  Google Scholar 

  • Sun Y, Zhou X, Zheng G, Li J, Shi H, Guo Z, Du J (2017) Carbon monoxide degassing from seismic fault zones in the Basin and range province, west of Beijing, China. J Asian Earth Sci 149:41–48. https://doi.org/10.1016/j.jseaes.2017.07.054

    Article  Google Scholar 

  • Szabo KZ, Jordan G, Horvath A, Szabo C (2014) Mapping the geogenic radon potential: methodology and spatial analysis for central Hungary. J Environ Radioact 129:107–120. https://doi.org/10.1016/j.jenvrad.2013.12.009

    Article  Google Scholar 

  • Tuccimei P, Mollo S, Soligo M, Scarlato P, Castelluccio M (2015) Real-time setup to measure radon emission during rockdeformation: implications for geochemical surveillance. Geosci Instrum Methods Data Syst 4:111–119. https://doi.org/10.5194/gi-4-111-2015

    Article  Google Scholar 

  • Voltattorni N, Cinti D, Pizzino L, Sciarra A (2014) Statistical approach for the geochemical signature of two active normal faults in the western Corinth Gulf Rift (Greece). Appl Geochem 51:86–100. https://doi.org/10.1016/j.apgeochem.2014.09.011

    Article  Google Scholar 

  • Wang L, Xianguo T, Chunlai L (2010) Research of radon transportation model to investigate buried fault. Preceedings of the 18th International Conference on Nuclear Engineering, ICONE 18, Xi’an, China.

  • Yuce G, Fu CC, D’Alessandro W, Gulbay AH, Lai CW, Bellomo S, Yang TF, Italiano F, Walia V (2017) Geochemical characteristics of soil radon and carbon dioxide within the dead sea fault and karasu fault in the amik basin (Hatay), Turkey. Chem Geol 469:129–146. https://doi.org/10.1016/j.chemgeo.2017.01.003

    Article  Google Scholar 

Download references

Acknowledgements

This work represents a part of the PhD thesis of Davide Romano (University of Messina; the dissertation defense took place on the 25th Feb 2022), which was funded by the FSE (Fondo Sociale Europeo) operational program (OP) for Sicily 2014–2020. The authors thank Carmelo Allegra, Andrea Maio and Antonio Torre for their support during field activities and the owners of the lands, where soil gases were collected. The authors acknowledge the Italia-Malta Interreg project “BESS” (Pocket Beach Management and Remote Surveillance System) Project for providing the velocimetric data of the Milazzo Peninsula. Moreover, we wish to thank two anonymous referees who provided very good suggestions to improve the quality of the manuscript.

Funding

This work was funded by the FSE (Fondo Sociale Europeo) operational program (OP) for Sicily 2014–2020.

Author information

Authors and Affiliations

Authors

Contributions

"All authors contributed to the study conception and design. Data collection and analysis were performed by D.R., A.G. and G.S. The manuscript was written by D.R., M.D.B., S.M., A.T. and F.I. and all authors commented on all versions of the paper. D.R. prepared figures. All authors reviewed the manuscript."

Corresponding author

Correspondence to Davide Romano.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romano, D., Sabatino, G., Magazù, S. et al. Distribution of soil gas radon concentration in north-eastern Sicily (Italy): hazard evaluation and tectonic implications. Environ Earth Sci 82, 273 (2023). https://doi.org/10.1007/s12665-023-10956-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-023-10956-6

Keywords

Navigation