Skip to main content

Advertisement

Log in

Characterizing and mapping intensity of land use in large basins through the concept of land use capability

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Land use and land cover (LULC) planning stands out for listing potentials and limitations to land use aiming to reduce erosion to tolerable limits based on soil characteristics, relief, and socioeconomic aspects of landowners. To demonstrate the possibilities and limitations of agroecosystems diagnosis in large basins through the concept of land use capability, this work proposed a methodology for agro-environmental diagnosis applied to the Doce river basin (DRB) that was validated based on google earth images samples and suspend soil concentration in rivers. The methodology consisted of comparing the land use capability with the intensity of use caused by the LULC. The results showed that DRB is suited for intensive conservationist agricultural uses. However, some regions, are suitable for more intense agricultural activities. The factors regarding relief (slope and recharge) are the most restrictive ones to more intensive use in the basin. Pasture is the main use in the Doce river basin and had the highest percentage of areas used above the land use capability, followed by perennial agriculture and eucalyptus. The methodology of agro-environmental diagnosis based on the concept of land use capability was considered adequate for the diagnosis of agroecosystems at DRB since at a local scale, it was estimated accuracy of 95.5% of the number of exceeding classes in 45 sampled polygons and, at a regional scale, the linear regression between soil use and management index (Ium) and suspended soil concentration in rivers at Hydrographic Regions obtained an R2, RMSEN, and NSE of 0.79, 0.12, and 0.74.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Alvarez et al. (2014), Abatzoglou et al. (2018), Drucker et al. (2017), and IBGE (2018). D Dense Ombrophilous Forest, F Seasonal Semideciduous Forest, L Campinaranas, NM Contact Seasonal Forest/Mixed Ombrophilous Forest, ON Contact Ombrophilous Forest/Seasonal Forest, OP Contact Ombrophilous Forest/Pioneers Formation (Restinga), P Pioneer Formation, S Savannah (Cerrado), SN Contact Savanna/Seasonal Forest

Fig. 2

Source: CERH-MG (2020) and Lima et al. (2019)

Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Abatzoglou JT, Dobrowski SZ, Parks SA, Hegewisch KC (2018) TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific Data 5:1–12. https://doi.org/10.1038/sdata.2017.191

    Article  Google Scholar 

  • Ab`Sáber A (2012) Os Domínios de Natureza no Brasil: Potencialidades Paisagísticas, 7th edn. Ateliê Editorial, Cotia

    Google Scholar 

  • Adhikari K, Hartemink AE (2016) Linking soils to ecosystem services - a global review. Geoderma 262:101–111. https://doi.org/10.1016/j.geoderma.2015.08.009

    Article  Google Scholar 

  • Alvarez CA, Stape JL, Sentelhas PC, Gonçalvez JLDM, Sparovek G (2014) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • Andrade RG, Teixeira AHC, Sano EE, Leivas JFC, Victoria D, Nogueira SF (2014) Pasture evapotranspiration as indicators of degradation in the Brazilian Savanna: a case study for Alto Tocantins watershed. Remote Sensing for Agriculture, Ecosystems, and Hydrology XVI 9239, 92391Z. https://doi.org/10.1117/12.2067225

  • Aprile F, Lorandi R, Siqueira G (2016) Influence of natural and anthropogenic processes in the coastline evolution at the Doce River Mouth (Espírito Santo, Brazil). Br J Environ Clim Change 6:18–27. https://doi.org/10.9734/bjecc/2016/25454

    Article  Google Scholar 

  • Atalay I (2016) A new approach to the land capability classification: case study of Turkey. Proc Environ Sci 32:264–274. https://doi.org/10.1016/j.proenv.2016.03.031

    Article  Google Scholar 

  • Barona E, Ramankutty N, Hyman G, Coomes OT (2010) The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ Res Lett. https://doi.org/10.1088/1748-9326/5/2/024002

    Article  Google Scholar 

  • Berbet MLC, Costa MH (2003) Climate change after tropical deforestation: seasonal variability of surface albedo and its effects on precipitation change. J Clim 16:2099–2104. https://doi.org/10.1175/1520-0442(2003)016%3c2099:CCATDS%3e2.0.CO;2

    Article  Google Scholar 

  • BRASIL (2012) LEI No 12.651

  • Calegario A (2021) Methodology for characterizing and mapping the intensity of land use. Viçosa

  • Calegario AT, Pereira LF, da Silva LNO, de Araújo UL, da Silva DD, Pereira SB, Oliveira GC, Filho EIF, Monteiro LIB (2021) Land use capability at recharge zones. Soil Use Manag 37:618–627. https://doi.org/10.1111/sum.12588

    Article  Google Scholar 

  • Campbell BM, Beare DJ, Bennett EM, Hall-Spencer JM, Ingram JSI, Jaramillo F, Ortiz R, Ramankutty N, Sayer JA, Shindell D (2017) Agriculture production as a major driver of the earth system exceeding planetary boundaries. Ecol Soc. https://doi.org/10.5751/ES-09595-220408

    Article  Google Scholar 

  • Campos JA, da Silva DD, Moreira MC, Menezes Filho FCM (2021) Environmental fragility and land use capacity as instruments of environmental planning, Caratinga River basin. Brazil Environ Earth Sci 80:264. https://doi.org/10.1007/s12665-021-09553-2

    Article  Google Scholar 

  • Cenibra (2020) Plano de Manejo Florestal. Belo Oriente

  • CERH-MG (2020) DELIBERAÇÃO NORMATIVA CERH-MG No 66

  • Coelho ALN (2006) Situação hídrico-geomorfológica da bacia do rio doce com base nos dados da série histórica de vazões da estação de colatina - ES. Caminhos de Geogr 7(19):56–79

    Article  Google Scholar 

  • Cunha FL, Nieri EM, de Melo LA, Araújo TG, Leite FP, Venturin N (2020) Indicadores de qualidade da subsolagem com escavadora hidráulica em áreas declivosas em duas diferentes umidades do solo. Sci For 48:1–10. https://doi.org/10.18671/scifor.v48n128.16

    Article  Google Scholar 

  • Cupolillo F, de Abreu ML, Vianello RL (2008) Climatologia da Bacia do Rio Doce e sua Relação com a Topografia Local. Geografias 04:45–60

    Article  Google Scholar 

  • de Figueiredo EB, Jayasundara S, de Oliveira Bordonal R, Berchielli TT, Reis RA, Wagner-Riddle C, la Scala N (2017) Greenhouse gas balance and carbon footprint of beef cattle in three contrasting pasture-management systems in Brazil. J Clean Prod 142:420–431. https://doi.org/10.1016/j.jclepro.2016.03.132

    Article  Google Scholar 

  • de Oliveira Fagundes H, de Paiva RC, Fan FM, Buarque DC, Fassoni-Andrade AC (2020) Sediment modeling of a large-scale basin supported by remote sensing and in-situ observations. Catena (Amst) 190:104535. https://doi.org/10.1016/j.catena.2020.104535

    Article  Google Scholar 

  • de Souza Fraga M, Reis GB, da Silva DD, Guedes HAS, Elesbon AAA (2020) Use of multivariate statistical methods to analyze the monitoring of surface water quality in the Doce River basin, Minas Gerais, Brazil. Environ Sci Pollut Res 27:35303–35318. https://doi.org/10.1007/s11356-020-09783-0

    Article  Google Scholar 

  • de SouzaFraga M, Reis GB, da Silva DD, Guedes HAS, Elesbon AAA (2021) Temporal and spatial trend analysis of surface water quality in the Doce River basin, Minas Gerais, Brazil. Environ Dev Sustain. https://doi.org/10.1007/s10668-020-01160-8

    Article  Google Scholar 

  • Dias LCP, Pimenta FM, Santos AB, Costa MH, Ladle RJ (2016) Patterns of land use, extensification, and intensification of Brazilian agriculture. Glob Chang Biol 22:2887–2903. https://doi.org/10.1111/gcb.13314

    Article  Google Scholar 

  • Drucker DP, Pinto DM, Fidalgo ECC, Custódio DO, de Castro Victoria D, Almeida BT, Simões M, Machado CRDL, dos Santos Brandão VV, Dart RO, Aglio MLD, Rasche F, Laforet MRC, Bettiol GM, Pereira SEM, Brandão ZN, Garrastazu MC, Alba JMF, da Costa FA, Torres RC, Dompieri MHG, Sampaio SMN, Martins EC, Junior IP, Bayma-Silva G, Galinari G, Fiorini FB, Takemura CM, da Cruz SAB, Holler WA, de Oliveira LH (2017) GeoInfo - infraestrutura de dados espaciais abertos para a pesquisa agropecuária geoInfo. Rev Eletrônica Comun, Inf Inov Saúde 11:1–17

    Google Scholar 

  • Ecoplan-Lume (2010) Plano Integrado de Recursos Hídricos da Bacia Hidrográfica do Rio Doce

  • FBDS (2019) Fundação Brasileira para Desenvolvimento Sustentável [WWW Document]. URL http://geo.fbds.org.br/. Accessed 31 Dec 2019

  • Ferreira FM, Ferreira Neto JA (2017) O SOTERPA como alternativa para o ordenamento territorial dos assentamentos rurais de reforma agrária The SOTERPA as an alternative to the spatial planning of rural settlements of agrarian reform. Rev ESPACIOS 38:12

    Google Scholar 

  • Franco FS, Couto L, de Carvalho AF, Jucksch I, Fernandes Filho EI, Silva E, Meira Neto JAA (2002) Quantificação de erosão em sistemas agroflorais e convencionais na Zona da Mata de Minas Gerais. Rev Árvore 26:751–760. https://doi.org/10.1590/S0100-67622002000600011

    Article  Google Scholar 

  • Freitas H, Inacio E, Filho F, Cardoso IM (2018) Sistemas de avaliação de terras e conhecimentos etnopedológicos no planejamento de assentamentos rurais: um estudo de caso nos mares de morro de Minas Gerais. Rev Bras Agroecol 13:76–89

    Google Scholar 

  • Gashaw T, Tulu T, Argaw M, Worqlul AW (2018) Land capability classification for planning land uses in the Geleda watershed, Blue Nile Basin, Ethiopia. Model Earth Syst Environ 4:489–499. https://doi.org/10.1007/s40808-018-0448-7

    Article  Google Scholar 

  • IBGE (2006) Ajustamento da Rede Planimétrica Brasileira em Sirgas2000. IBGE 1–29

  • IBGE (2018) Mapeamento de Recurso Naturais do Brasil Escala 1:250.000

  • Klingebiel AA, Montgomery PH (1961) Land-capability classification. Soil Conservation Service. US Govt Printing Office, Washington, DC

    Google Scholar 

  • Lepsch IF, Espindola CR, Vischi Filho OJ, Hernani LC, Siqueira DS (2015) Manual para levantamento utilitário e classificação de terras no sistema de capacidade de uso, 1st edn. SBCS, Viçosa

    Google Scholar 

  • Lima RPC, da Silva DD, Pereira SB, Moreira MC, Passos JBMC, Coelho CD, Elesbon AAA (2019) Development of an annual drought classification system based on drought severity indexes. An Acad Bras Cienc. https://doi.org/10.1590/0001-3765201920180188

    Article  Google Scholar 

  • Lynn I, Manderson A, Page M, Harmsworth G, Eyles G, Douglas G, Mackay A, Newsome P (2009) Land Use Capability Survey Handbook - a New Zealand handbook for the classification of land, 3rd ed. Hamilton, AgResearch; Lincoln, Landcare Research; Lower Hutt, GNS Science. https://doi.org/10.7931/DL1MG6

  • Lyra BU, Rigo D (2019) Deforestation impact on discharge regime in the Doce River Basin. Rev Ambiente Agua 14:e2370. https://doi.org/10.4136/1980-993X

    Article  Google Scholar 

  • McNeill JR (1986) Agriculture, forests, and ecological history: Brazil, 1500–1984. Environ Rev 10:122–133. https://doi.org/10.2307/3984562

    Article  Google Scholar 

  • MEA (2005) Ecosystems and human well-being: systhesis. Island, Washington, DC. https://doi.org/10.1196/annals.1439.003

    Book  Google Scholar 

  • Monteiro LIB (2016) PAGAMENTOS POR SERVIÇOS AMBIENTAIS EM CONDIÇÃO DE USO INTENSIVO DO SOLO

  • Monteiro LIB, Pruski FF, Calegario AT, Oliveira ANG, Pereira SB (2018) Methodology for payment for ecosystem services based on the concept of land use and management capability. Soil Use Manag 34:515–524. https://doi.org/10.1111/sum.12442

    Article  Google Scholar 

  • Oliveira KSS, da Quaresma V, S., (2017) Temporal variability in the suspended sediment load and streamflow of the Doce River. J S Am Earth Sci 78:101–115. https://doi.org/10.1016/j.jsames.2017.06.009

    Article  Google Scholar 

  • Projeto MapBiomas (2020) Coleção 2.3 da Série Anual de Mapas de Cobertura e Uso de Solo do Brasil. URL http://mapbiomas.org. Accessed 31 Jan 2020

  • Pruski FF (2009) Conservação de solo e água: práticas mecânicas para o controle da erosão hídrica, 2nd edn. UFV, Viçosa

    Google Scholar 

  • Rajão R, Soares-Filho B, Nunes F, Börner J, Machado L, Assis D, Oliveira A, Pinto L, Ribeiro V, Rausch L, Gibbs H, Figueira D (2020) The rotten apples of Brazil’s agribusiness. Science 1979(369):246–248. https://doi.org/10.1126/science.aba6646

    Article  Google Scholar 

  • Rezende CL, Scarano FR, Assad ED, Joly CA, Metzger JP, Strassburg BBN, Tabarelli M, Fonseca GA, Mittermeier RA (2018) From hotspot to hopespot: an opportunity for the Brazilian Atlantic Forest. Perspect Ecol Conserv 16:208–214. https://doi.org/10.1016/j.pecon.2018.10.002

    Article  Google Scholar 

  • Rocha WW, Junior D, Lima JM, Miranda EE, Silva AR (2002) Resistência ao cisalhamento e graude intemperismo de cinco solosna região de lavras (MG). Rev Bras Ciencia Solo 36:297–30

    Article  Google Scholar 

  • Roser M, Ritchei R (2019) Yields and land use in agriculture [WWW Document]. Our World in Data. URL https://ourworldindata.org/yields-and-land-use-in-agriculture. Accessed 31 Dec 2018

  • Schaefer CEGR (2013) Bases físicas da paisagem brasileira: estrutura geológica, relevo e solos. In: Araújo AP, Alves BJR (eds) Tópicos em ciência do solo. Sociedade Brasileira de Ciência do Solo, Viçosa, p 69

    Google Scholar 

  • Taveira LRS, Weindorf DC, de Menezes MD, de Carvalho TS, da Motta PEF, Teixeira AFS, Curi N (2021) Land use capability classification adaptation in low and intermediate technology farming systems: a soil erosion indicator. Soil Use Manag 37:164–180. https://doi.org/10.1111/sum.12555

    Article  Google Scholar 

  • Thomazini A, de Azevedo HCA, Mendonça EDS (2012) Perdas de solo, água e nutrientes em sistemas conservacionistas e convencionais de café no sul do estado do Espírito Santo. Rev Brasil Agroecol 7:150–159

    Google Scholar 

  • UFV, MDR (2020) Metodologia de definição de áreas prioritárias para recuperação ambiental. Relatório Final. https://www.meioambiente.go.gov.br/files/Juntos_Araguaia/04_Areas_Prioritarias.pdf

  • UFV, UFMG, RENOVA (2018) Metodologia de Priorização (Produto 3.2). Definição de Critérios de priorização de áreas para Recuperação ambiental na Bacia do rio Doce. https://www.fundacaorenova.org/relatorio/definicao-de-criterios-de-priorizacao-de-areas-para-recuperacao-ambiental-na-bacia-do-rio-doce-julho-2018/

  • USGS (2017) Earth explorer [WWW Document]. Earth Explorer. URL https://earthexplorer.usgs.gov/. Accessed 31 Dec 2018

  • Valera CA, Valle Junior RF, Varandas SGP, Sanches Fernandes LF, Pacheco FAL (2016) The role of environmental land use conflicts in soil fertility: a study on the Uberaba River basin, Brazil. Sci Total Environ 562:463–473. https://doi.org/10.1016/j.scitotenv.2016.04.046

    Article  Google Scholar 

  • Webb TJ, Ian Woodward F, Hannah L, Gaston KJ (2005) Forest cover-rainfall relationships in a biodiversity hotspot: the Atlantic forest of Brazil. Ecol Appl 15:1968–1983. https://doi.org/10.1890/04-1675

    Article  Google Scholar 

Download references

Acknowledgements

We thank Brazilian citizens via the Department of Agricultural Engineering (DEA) and the Center of Reference in Water Resources (CRRH) of the Universidade Federal de Viçosa for supporting the researchers. This study was financed, in part, by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and is part of first author doctoring thesis.

Funding

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, 001, Arthur Calegario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Telles Calegario.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Supplementary file2 (DOCX 148086 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calegario, A.T., da Silva, D.D., Fernandes Filho, E.I. et al. Characterizing and mapping intensity of land use in large basins through the concept of land use capability. Environ Earth Sci 82, 151 (2023). https://doi.org/10.1007/s12665-023-10811-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-023-10811-8

Keywords

Navigation