Skip to main content

Advertisement

Log in

Permeability scale effect analyzed in high resolution in Brazilian Neoproterozoic karst aquifer

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

A Correction to this article was published on 08 February 2023

This article has been updated

Abstract

Quantifying the permeability in karst aquifers often is imprecise and difficult to interpret. Therefore, it is possible to notice the increase and decrease of permeability values related to the known triple porosity within the karstic system. This work analyzed small- and well-scale data from a tubular well situated in a Brazilian Neoproterozoic karst aquifer to show the scale effect and relationships between fractures/channels flow zones and regional tectonic structures of the area. At the micro-scale, 3D micro-Ct images of tubular well core samples and thin sections were used to analyze the aquifer matrix and micro-fractures. In well-scale, data from high-resolution acoustic geophysical logging, borehole video, and drilling reports helped to analyze fractures and channels. Multi-scale lineament mapping with geophysical logging aided to correlate the major tectonic structures in the area to the existing flow zones. The result showed an increase of eleven orders of magnitude in values of permeability and transmissivity from micro- to well-scale, indicating the scale effect, explained by the low permeability of the matrix and the influence of fractures and channels in flow zones in the aquifer. The groundwater flow can be linked regionally to the presence of tectonic structures associated with the anticlinal fold present in the study area, diabase dike intrusions, and the Cenozoic transcurrence. The use of high-resolution methods makes possible the distinction between matrix, fractures, and channels in the calculation of hydraulic parameters allowing a better understanding of the influence of each structure in the groundwater flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article [and its supplementary information files].

Change history

Abbreviations

\({b}_{f}\) :

Hydraulic aperture of a single fracture [L]

\({b}_{total}\) :

Total thickness of aquifer [L]

\({d}_{c}\) :

Channel aperture [L]

\({d}_{c,lam}\) :

Laminar channel aperture [L]

\({d}_{c,turb}\) :

Turbulent channel aperture [L]

Dp:

Average pore diameter [L]

\(g\) :

Gravitational constant [L/t2]: 9.81 m/s2

\(k\) :

Matrix permeability [L2]

\({k}_{f}\) :

Permeability of a fracture [L2]

\({K}_{sm}\) :

Matrix hydraulic conductivity [L/t]

sp :

Sample surface area [L2]

\({T}_{w}\) :

Transmissivity [L2/t]

θ :

Angle between fracture and horizontal (dip of each fracture)

\(v\) :

Kinematic viscosity of the water [L2/t]: 10–6 m2/s

\({\upsilon }_{p}\) :

Particle volume [L3]

ε :

Effective porosity of matrix [µL]

φ:

Particle sphericity [L]

References

  • Alves FM (2008) Tectônica rúptil aplicada ao estudo de aquífero em rochas cristalinas fraturadas na região de Cotia, SP [Brittle tectonics applied to the study of aquifer in fractured crystalline rocks in the region of COtia, SP]. Universidade de São Paulo, Brazil, p 116

    Google Scholar 

  • Anaba Onana AB, Ndam Ngoupayou JR, Mvondo OJ (2017) Analysis of crystalline bedrock aquifer productivity: case ofcentral region in Cameroon. Groundw Sustain Dev. https://doi.org/10.1016/j.gsd.2017.05.003

    Article  Google Scholar 

  • Andvanced Logic Technology sa, 1993 - 2020. Wellcad software manual. Advanced Logic Technology sa. 30H, Route de Niederpallen, L-8506 Redange-sur-Attert, Luxembourg.

  • Appoloni CR, Fernandes CP, Rodrigues CRO (2007) X-ray microtomography of a sandstone reservoir rock. Nucl Instrum Methods Phys Res A 580:629–632

    Article  Google Scholar 

  • Athayde GB (2013) Compartimentação hidroestrutural do sistema aquífero Serra Geral (SASG) no Estado do Paraná, Brasil [Hydro- structural compartmentalization of the Serra Geral aquifer system (SASG) in the state of Paraná, Brazil]. Universidade Federal do Paraná, Curitiba, p 155

    Google Scholar 

  • Bahniuk A (2007) Controles Geológicos da Carstificação em metadolomitos da formação Capiru – Neoproterozóico, região metropolitana de Curtiba, Paraná [Geological controls of karstification in metadolomites of the Capiru Formation - Neoproterozoic, metropolitan region of Curtiba, Paraná]. DMsc Thesis, Universidade Federal do Paraná, Curitiba, Brazil, pp. 138

  • Bakalowicz M (2005) Karst Groundwater: a challenge for new resources. Hydrogeol J 13:148–160

    Article  Google Scholar 

  • Bakalowicz M (1992). Géochimie des eaux et flux de matières dissoutes. L’approche objective du rôle du climat dans la karstogénèse. (Water geochemistry and dissolved solid flux. The objective approach of climate part in the genesis of karst). Karst et évolutions climatiques. Hommage à Jean Nicod. Universitaires de Bordeaux, Talence p 61–74

  • Bense VF, Gleeson T, Loveless SE, Bour O, Scibek J (2013) Fault zone hydrogeology. Earth-Sci Rev. https://doi.org/10.1016/j.earscirev.2013.09.008

    Article  Google Scholar 

  • Bigarella JJ, Salamuni R (1958) Contribuição a geologia da região sul da Série Açungui (estado do Paraná). Bol Paulista De Geografia 29:3–19

    Google Scholar 

  • Bonacim EA (1996) Dinâmica do sistema hidrogeológico cárstico na área de tranqueira – região metropolitana de curitiba [Dynamics of the karstic hydrogeological system in the tranqueira area - metropolitan region of curitiba]. Universidade Federal do Paraná, Curitiba, p 176

    Google Scholar 

  • Boons, S. Software CTVox, version 1.0.0.r479. Kontich, Bélgica, 2010. Disponível em: http://www.skyscan.be/ products/downloads.htm.

  • Brush DJ, Thomson NR (2003) Fluid flow in synthetic rough-walled fractures: navier-stokes, stokes, and local cubic law simulations. Water Resour Res 39:1085. https://doi.org/10.1029/2002WR001346

    Article  Google Scholar 

  • Campanha GA, Sadowski GR (1999) Tectonics od the Southern portion of the ribeira belt (apiaí domain). Precambr Res 98:31–51

    Article  Google Scholar 

  • Carman P (1937) Fluid flow through a granular bed. Trans Inst Chem Eng 15:150–167

    Google Scholar 

  • Castany G (1984) Hydrogeological features of carbonate rocks, in Guide to the Hydrology of Carbonate Rocks. In: LaMoreaux PE, Wilson BM, Memon BA (eds) Studies and Reports in Hydrology 41. UNESCO, Paris, pp 47–67

    Google Scholar 

  • Chandra S, Auken E, Maurya PK, Ahmed S, Verma SK (2019) Large scale mapping offractures and groundwater pathways in crystalline Hardrock by AEM. Sci Rep. https://doi.org/10.1038/s41598-018-36153-11

    Article  Google Scholar 

  • Chavez-Kus L, Salamuni E (2008) Evidência de tensão N-S intraplaca no neógeno, complexo atuba - região de curitiba (PR) [Evidence of intra-plate n–s tension in the neogene, atuba complex - Curitiba region (PR)]. Rev Bras Geociências. https://doi.org/10.25249/0375-7536.2008383439454

    Article  Google Scholar 

  • Clauser C (1992) Permeability of crystalline rocks. EOS, Trans Am Geophys Union 73(21):233–238

    Article  Google Scholar 

  • Day-Lewis FD, Slater LD, Robinson J, Johnson CD, Terry N, Werkema D (2017) An overview of geophysical technologies appropriate for characterization and monitoring at fractured-rock sites. J Environ Management 204:709–720

    Article  Google Scholar 

  • Fernandes AJ (2008) Aqüíferos fraturados: uma revisão dos condicionantes geológicos e dos métodos de investigação [Fractured aquifers: a review of geological conditions and research methods]. Rev Inst Geológico. https://doi.org/10.5935/0100-929x.20080005

    Article  Google Scholar 

  • Fernandes AJ, Amaral G (2002) Cenozoic tectonic events at the border of the Paraná Basin São Paulo, Brazil. J South Am Earth Sci. https://doi.org/10.1016/S0895-9811(01)00078-5

    Article  Google Scholar 

  • Fernandes AJ, Rudolph DL (2001) The influence of Cenozoic tectonics on the groundwater-production capacity of fractured zones: a case study in Sao Paulo, Brazil. Hydrogeol J 9:151–167. https://doi.org/10.1007/s100400000103

    Article  Google Scholar 

  • Fernandes AJ, Perrotta MM, Salvador ED, Azevedo SG, Gimenez FA, Paulon N (2007) Potencial dos aquíferos fraturados do estado de São Paulo: condicionantes geológicos [Potential of fractured aqui- fers in the state of São Paulo: geological constraints]. Águas Subterrân. https://doi.org/10.14295/ras.v21i1.16168

    Article  Google Scholar 

  • Fernandes AJ, Maldaner CH, Rouleau A (2011) Análise das fraturas nos basaltos de ribeirão preto, sp: aplicação à elaboração de modelo hidrogeológico conceitual [analysis of fractures in the basalts of ribeirão preto, SP: application to the development of a conceptual hydrogeological model]. Geol USP. https://doi.org/10.5327/Z1519-874X2011000300003

    Article  Google Scholar 

  • Fernandes AJ, Fiume B, Bertolo R, Hirata RCA (2016) Modelo geométrico de fraturas e análise da tectônica rúptil aplicados ao estudo do fluxo do aquífero cristalino, São Paulo (SP). Geometric model of fractures and analysis of brittle tectonics applied to the study of the flow of the crystalline aquifer, São Paulo (SP). Geol USP. https://doi.org/10.11606/issn.2316-9095.v16i3p71-88

    Article  Google Scholar 

  • Fiori AP (1991) Tectônica e Estratigrafia do Grupo Açungui a norte de Curitiba [Tectonics and stratigraphy of the açungui group north of Curitiba]. Instituto de Geociências USP, São Paulo, p 261p

    Google Scholar 

  • Fiori AP, Gaspar LA (1993) Considerações sobre a estratigrafia do Grupo Açungui (Proterozóico Superior), Paraná, Sul do Brasil [Considerations on the stratigraphy of the Açungui Group (Upper Proterozoic), Paraná, South Brazil]. Instituto de Geologia, Universidade de São Paulo, São Paulo, Série Científica, pp 1–19

    Google Scholar 

  • Ford D, Williams P (2007) Karst Hydrogeology and Geomorphology. John Wiley & Sons Ltd, London, p 562

    Book  Google Scholar 

  • Freeze AR, Cherry JA (1979) Groundwater: Englewood Cliffs. Prentice-Hall, New Jersey, p 604

    Google Scholar 

  • Fúlfaro VJ, Suguio K (1967) Campos de diques de diabásio da bacia do Paraná [Diabase dyke fields of the Paraná basin]. Bol Da Soc Bras De Geol 16:23–37

    Google Scholar 

  • Galvão P, Halihan T, Hirata R (2015) The karst permeability scale effect of Sete Lagoas, MG, Brazil. Hydrol J 532:149–162

    Article  Google Scholar 

  • Geet MV, Swennen R, Wevers M (2000) Quantitative analysis of reservoir by microfocos X-ray computerised tomography. Sedimentary Geology Elsev 132:25–36

    Article  Google Scholar 

  • Geet MV, Swennen R, Wevers M (2001) Towards 3-D petrograpgy: applivcation of microfocos computer tomogra´hy in geological science. Comput Geosc 27:1091–1099

    Article  Google Scholar 

  • Gleeson T, Novakowski K (2009) Identifying watershed-scale barriers to groundwater flow: lineaments in the Canadian Shield. Bull Geol Soc Am 121:333–347. https://doi.org/10.1130/B26241.1

    Article  Google Scholar 

  • Goldscheider N, Drew D (2007) Methods in Karst Hydrogeology. International Contributions to Hydrogeology, 26. Taylor & Francis, London, p 264

    Google Scholar 

  • Guimarães D., 2019. Evolução Tectonometamórfica e Estudo de Proveniência da Sucessão Rio das Cobras-Terreno Paranguá (Cinturão Ribeira Sul) [Tectonometamorphic Evolution and Provenance Study of the Rio das Cobras-Terrain Paranaguá Succession (Ribeira Sul Belt)]. Master Thesis, Universidade Federal do Paraná, Curitiba, Brazil, 149 pp. https://acervodigital.ufpr.br/handle/1884/60350?

  • Halihan T, Wicks CM, Engeln JF (1998) Physical response of a karst drainage basin to flood pulses: example of the Devil’s Icebox cave system (Missouri, USA). J Hydrol 204:24–36

    Article  Google Scholar 

  • Halihan T, Sharp JM Jr, Mace RE (1999) Interpreting flow using permeability at multiple scales. In: Palmer AR, Palmer MV, Sasowsky ID (eds) Karst Modeling. Karst Waters Institute Special Publication No. 5, Charlottesville, pp 82–96

    Google Scholar 

  • Halihan T, Sharp JM Jr, Mace RE (2000) Flow in the San Antonio segment of the Edwards Aquifer: matrix, fractures, or conduits? In: Wicks CM, Sasowsky ID (eds) Groundwater Flow and Contaminant Transport in Carbonate Aquifers. Balkema, Rotterdam, pp 129–146

    Google Scholar 

  • Harum T, Saccon P, Rosa Filho E (2000) Projeto Karst: Water balance ans Idotopoe investigations in the compartment Karst aquifer od Colombo-Fervida (Curitiba-Pr). 1ºJoint Wrold Congress on Groundwater, p 23

  • Hinsby K, McKay LD, Jørgensen P, Lenczewski M, Gerba CP (1996) Fracture aperture measurements and migration of solutes, viruses and immiscible creosote in a column of clay till. Ground Water 34:1065–1075

    Article  Google Scholar 

  • Hovorka SD, Mace RE, Collins EW (1995) Regional distribution of permeability in the Edwards Aquifer. Draft contract report to the edwards underground water district under contract. Bureau of Economic Geology The University of Texas at Austin, Austin, p 77

    Google Scholar 

  • Huntoon PW (1985) Gradient controlled caves, trapper-medicine lodge area, bighorn basin, Wyomig. Ground Water 23:443–448

    Article  Google Scholar 

  • Kharitono V (2003) Software CTAnalyser, version 1.10.9.0. Kontich, Bélgica. DVD licenciado

  • Kharitonov V (2010) Software CTVol realistic 3D- visualization, version 2.2.0.0. Kontich, Bélgica. DVD licenciado

  • Király L (1975) Rapport sur l’état actuel des connaissances dans le domaine des caractères physique des roches karstique. In: Burger A, Dubertet L (eds) Hydrogeology of Karstic Terrains. International Association of Hydrogeologists, Paris, pp 53–67

    Google Scholar 

  • Kiraly L (2002) Karstification and groundwater flow, in Evolution of Karst: from Prekarst to Cessation. In: Gabrovsek F (ed) Institut za raziskovanje krasa. ZRC SAZU, Postojna-Ljubljana, pp 155–190

    Google Scholar 

  • Konzuk JS, Kueper BH (2004) Evaluation of cubic law based models describing single-phase flow through a rough- walled fracture. Water Resour Res 40:W02402. https://doi.org/10.1029/2003WR002356

    Article  Google Scholar 

  • Kozeny J (1927) Uber kapillare Leitung der Wasser in Boden. Sitzungs- Ber Akad Wiss Wien 136:271–306

    Google Scholar 

  • Lamb H (1932) Hydrodinamics, 6th edn. Dover, New York. p, p 738

    Google Scholar 

  • Lisboa A (1997) Proposta de metodologia para avaliação hidrogeológica do aquífero cárstico, compartimento de São Miguel [Proposed methodology for hydrogeological assessment of the karst aquifer, São Miguel compartment]. DSc Thesis, Universidade Federal do Paraná, Brazil, p 147

  • Maclay RW, Land LF (1988) Simulation of flow in the Edwards Aquifer, San Antonio Region, Texas, and Refinement of the Storage and Flow Concepts. U.S. Geological Survey Water-Supply Paper 2336-A, p 48

  • Madrucci V, Taioli F, Araújo CC (2008) Groundwater favorability map using GIS multicriteria data analysis on crystalline terrain, São Paulo state, Brazil. J Hydrol 357:153–173. https://doi.org/10.1016/j.jhydrol.2008.03.026

    Article  Google Scholar 

  • Mangin A (1975) Contribution a l’étude hydrodynamique des aquifères karstiques. Thèse, Institut des Sciences de la Terre de l’Université de Dijon

  • Martinez-Landa L, Carrera J (2005) Na analysis of hydraulic conductivity scale effects in granite (Full-scale Engineered Barrier Experiment – FEBEX), Grimsel. Switzerland Water Resour Res 41(W03006):1–13. https://doi.org/10.1029/2004WR003458

    Article  Google Scholar 

  • Mohamed L, Sultan M, Ahmed M, Zaki A, Sauck W, Soliman F, Yan E, Elkadiri R, Abouelmagd A (2015) Structural controls on groundwater flow in basement terrains: geophysical, remote sensing, and field investigations in Sinai. Surv Geophys. https://doi.org/10.1007/s10712-015-9331-5

    Article  Google Scholar 

  • Moore CH (1989) Carbonate diagenesis and porosity. Development in Sedimentology, vol 46. Elsevier, Amsterdam, p 338

    Google Scholar 

  • Neves MA, Morales N (2007) Well productivity controlling factors in crystalline terrains of southeastern Brazil. Hydrogeol J. https://doi.org/10.1007/s10040-006-0112-6

    Article  Google Scholar 

  • O’Leary DW, Friedman JD (1978) Towards a workable lineament symbology. Proceedings of the Third International Conference on the New Basement Tectonics, Basement Tectonics Committee Publication no. 3, Basement Tectonic Committee, Denver, CO, pp 29–31

  • Oliveira DGG, Monteiro MD, Massoni F, Rocha HC (2012) Televisionamento de Furos de Sondagens nos Estudos do Metrô de São Paulo - Proposta Metodológica para Execução e Análise [provisioning of boreholes in São Paulo subway studies—methodological proposal for execution and analysis]. Revista Brasileira De Geologia De Engenharia e Ambiental 2(1):95–114

    Google Scholar 

  • Paillet FL, Ollila P (1994) Identification, characterization and analysis of hydraulic conductive fractures of granitic basement rocks, Massachussetts. US. Geological Survey, Water Resources investigation Report. 94–4185, 38p

  • Passarelli CR, Basei MAS, Siga O, Harara OMM (2018) The Luis Alves and Curitiba terranes: continental fragments in the Adamastor Ocean. In: Siegesmund S, Basei M, Oyhantçabal P, Oriolo S (eds) Geology of Southwest Gondwana Regional Geology Reviews. Springer, Cham, pp 189–215

    Chapter  Google Scholar 

  • Pino D, Roy D, Rouleau A, Fernandes A, Bertolo R (2019) Linhas de levantamento estrutural: correção do viés de orientação a partir de planilhas eletrônicas [Structural survey lines: correcting orientation bias from spreadsheets]. Revista Do Instituto Geológico, São Paulo 40:49–74

    Article  Google Scholar 

  • Pires CA, Athayde GB, Souza filho O.A., Ofterdinger U., (2021) Litho-structural condiotioning in the exploration of fractured aquifers: a case study in the crystalline basement aquifer system of Brazil. Hydrogeol J 29:1657–1678

    Article  Google Scholar 

  • Priest SD (1993) Discontinuity analysis for rock engineering. Chapman & Hall, London, p 473

    Book  Google Scholar 

  • Reis NJ, Fiori A, Lopes A, Marchese C, Pinto-Coelho CV, Vasconcellos EMG, Silva GF, Sechi R (2011) A microtomografia computadorizada de raios-x integrada à petrografia no estudo tridimensional de porosidade em rochas [X-ray computed microtomography integrated with petrography in the three-dimensional study of porosity in rocks]. Revista Brasileira De Geociências 41:498–508

    Article  Google Scholar 

  • Remeysen K, Swennen R (2008) Application of microfocus computed tomography in carbonate reservoir characterization: Possibilities and limitations. Mar Pet Geol 25:486–499

    Article  Google Scholar 

  • Rivas RSZ, Salamuni E, Figueira IFR (2019) Análise estrutural rúptil na zona de influência do Arco de Ponta Grossa: estudo de caso na área da UHE-Mauá-PR [Brittle structural analysis in the influence zone of Ponta Grossa Arc: case study in the area of UHE-Mauá-PR]. Geociências 38:853–869. https://doi.org/10.5016/GEOCIENCIAS.V38I4.14232

    Article  Google Scholar 

  • Robertson Geologging LTD, 2021. High Resolution Acoustic Televiewer User manual. Deganwy, Conwy, LL31 9PX, United Kingdom. https://www.robertson-geo.com/wp-content/themes/robertson/downloadfiles/usermanual/1628177803.pdf

  • Rosa FE, Guarda M (2008) Compartimentação Hidrogeológica da formação Capiru na região norte de Curitiba – PR, Brasil [Hydrogeological Compartmentation of the Capiru formation in the northern region of Curitiba - PR, Brazil]. Revista Águas Subterrâneas 22:67–74

    Google Scholar 

  • Rouleau A, Gale JE (1985) Statistical Characterization of the fracture system in the Stripa granite, Sweden. Int J Rock Mech Min Sci 22:353–367

    Article  Google Scholar 

  • Salamuni E (1998) Tectônica da Bacia Sedimentar de Curitiba (Pr) [Tectonics of Curitiba Sedimentary Basin (Pr)]. PhD Thesis, Instituto de Geociências e Ciências Exatas Universidade Estadual Paulista, São Paulo, p 223

    Google Scholar 

  • Siga JO, Basei MAS, Reis Neto JM, Machiavelli A, Harara OM (1995) O Complexo Atuba: um cinturao paleoproterozoico intensamente retrabalhado no Neoproterozoico [The Atuba com- plex: a paleoproterozoic belt intensely reworked in the Neoproterozoic]. Univ Sao Paulo, São Paulo, Brazil, Inst Goeciencias

    Google Scholar 

  • Smith DI, Atkinson TC (1976) The erosion of limestones. In: Ford TD, Cullingford CHD (eds) The science of speleology. Academic Press, London, pp 151–177

    Google Scholar 

  • Smith DI, Atkinson TC, Drew DP (1976) The hydrology of limestone terrains. In: Ford TD, Cullingford CHD (eds) The Science of Speleology. Academic Press, London, pp 179–212

    Google Scholar 

  • Stevanovic Z (2015) Karst Aquifers – Characterization and Engineering. Springer International Publishing, Switzerland, p 698p

    Book  Google Scholar 

  • Stewart ML, Ward AL, Rector DR (2006) A study of pore geometry effect on anisotropy in hydraulic permeability using the lattice-Boltzmann method. Adv Water Resour 29:1328–1340

    Article  Google Scholar 

  • Stock SR (2009) Micro Computed Tomography: Methodology and Applications. CRC Press, Taylor and Francis Group, p 366

    Google Scholar 

  • Terzagui RD (1965) Sources of error in joint surveys. Géotechnique 15:287–304

    Article  Google Scholar 

  • Teutsch G, Sauter M (1998) Distributed parameter modelling approaches in karst-hydrological investigations. Bulletin D’hydrogeologie (neuchâtel) 16:99–110

    Google Scholar 

  • Tirén S (2010) Lineament interpretation short review and methodology. Swedish Radiation Safety Authority, Stockholm, p 42

    Google Scholar 

  • Turcotte DL, Schubert G (1982) Geodynamics: applications of continuum physics to geological problems. John Wiley & Sons, NY, p 450

    Google Scholar 

  • Van Meir N, Jaeggi D, Herfort M, Loew S, Pezard PA, Lods G (2007) Characterizing flow zones in a fractured and karstified limestone aquifer through integrated interpretation of geophysical and hydraulic data. Hydrogeol J 15(2):225–240

    Article  Google Scholar 

  • White WB (2002) Karst hydrology: recent developments and open questions. Eng Geol 65:85–105

    Article  Google Scholar 

  • White WB (2017) Groundwater flow in Karstic Aquifer. Chapter 20. In: Cushman J, Tartakovsky D (eds) The Handbook of Groundwater Engineering. CRC Press, Taylor & Francis Group, pp 563–595

    Google Scholar 

  • White WB, Culver D (2012) Encyclopedia of Caves. Book AID international. Sabre Foundation. Second (Edition). Elsevier, Amsterdam, pp. 963

  • Wildenschild D, Hopmans JW, Vaz CMP, Rivers ML, Rickard D, Christensen BSB (2002) Using x-ray tomography in hydrology: systems, resolutions and limitations. J Hydrol 267:285–297

    Article  Google Scholar 

  • Williams JH, Johnson CD (2003) Acoustic and optical borehole-wall imaging for fractured-rock aquifer studies. J Applied Geophysics 55:151–159

    Article  Google Scholar 

  • Worthington SRH, Ford DC, Beddows PA (2000) Porosity and Permeability Enhancement in Unconfined carbonate Aquifers as a Result of Solution. Speleogenesis: Evolution of Karst Aquifers. In: Klimchouk AV, Ford DC, Palmer AN, Dreybrodt W (eds), National Speleological Society of America, Huntsville, Al, pp 220-3

Download references

Acknowledgements

Thanks to Advanced Logic Technology for the academic license of Wellcad 5.4 and the ISI module. This work was funded by UFPR/FUNPAR l as part of the Diagenesis project, together with the Lamir Institute (iLamir-UFPR) and the Hydrogeological Research Laboratory (LPH-UFPR).

Funding

This Research was funded by Federal University of Paraná/FUNPAR as part of the Diagenesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tereza Cristina Ferreira Campos Morato Filpi.

Ethics declarations

Conflict of interest

This work was supported by Federal University of Paraná/FUNPAR as part of the  Diagenesis project together with the Lamir Institute (iLAMIR-UFPR) and the Hydrogeological Research Laboratory (LPH-UFPR) and the author Tereza Filpi has received research support from the Diagenesis Project during all the research time.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira Campos Morato Filpi, T., Ferreira Galvão, P., da Rocha Santos, L. et al. Permeability scale effect analyzed in high resolution in Brazilian Neoproterozoic karst aquifer. Environ Earth Sci 82, 57 (2023). https://doi.org/10.1007/s12665-022-10743-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-022-10743-9

Keywords

Navigation