Skip to main content
Log in

Sources and chronology of soluble salt formation in a medieval dovecote caught up in urbanisation: a resilience story?

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The dovecote is one of the last two witnesses of the medieval history of the city of Créteil (11 km SE of Paris). Classified as a historical monument by the French Ministry of Culture in 1972, it was moved away from its original location the same year and restored between 1980 and 1987. Fifty years after its displacement, the dovecote still shows salt efflorescence on the inner and outer wall surface. The aim of this study is to determine the composition and the ancient or modern source of these salts and whether their presence is harmful to the preservation of the dovecote. A combination of low- to non-invasive methods associating microclimatic measurements, mineralogical, petrophysical, chemical and isotopic analyses on micro-samples with historical documentation are used to find the causes of salt enrichment and migration throughout and after the service life of this monument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Åberg G, Stray H, Dahlin E (1999) Impact of pollution at a stone age rock art site in oslo, norway, studied using lead and strontium isotopes. J Archaeol Sci 26:1483–1488

    Article  Google Scholar 

  • AFNOR (2007) AFNOR B10–615, Méthodes d’essai des pierres naturelles - Détermination des masses volumiques réelle et apparente et des porosités ouverte et totale. Standard NF EN 1936. Association Française de Normalisation (AFNOR), Paris

  • Amoroso G, Fassina V (1983) Stone decay and conservation. Elsevier, Amsterdam, p 453

    Google Scholar 

  • Arnold A, Zehnder K (1989) Salt weathering on monuments. In: Zezza F (ed) Proceedings of the 1st international symposium on the conservation of monuments in the mediterranean Basin. Bari, pp 31–58

  • Aroskay A, Martin E, Bekki S, Montana G, Randazzo L, Cartigny P, Chabas A, Verney-Carron A (2021) The effect of volcanic emissions on black crust formation in Sicily (Italy): new data by multi O- and S-isotope analyses. Sci Total Environ 750:142283. https://doi.org/10.1016/j.scitotenv.2020.142283

    Article  Google Scholar 

  • Bionda D (2002) Runsalt 1.9 computer program. http://science.sdf-eu.org/runsalt/

  • Bionda D. (2006): Modelling indoor climate and salt behaviour in historical buildings: a case study. PhD-thesis n°16567, ETH Zurich

  • Bläuer C, Rousset B (2014) Salt sources revisited. SWBSS2014. 3rd International Conference on Salt of Buildings and Stone Sculptures. 305–318

  • Brand WA, Coplen TB, Vogl J, Rosner M, Prohaska T (2014) Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report). Pure Appl Chem 86:425

    Article  Google Scholar 

  • Chabas A, Jeannette D (2001) Weathering of marbles and granites in marine environment: petrophysical properties and special role of atmospheric salts. Environ Geol 40(3):359–368

    Article  Google Scholar 

  • Chabas A, Sizun JP, Gentaz L, Uring P, Phan A, Coman A, Alfaro S, Saheb M, Pangui E, Zapf P, Huet F (2018) Water content of limestones submitted to realistic wet deposition: a CIME2 chamber simulation. Environ Sci Pollut Res 25(24):23973–23985

    Article  Google Scholar 

  • Chang CCY, Langston J, Riggs M, Campbell DH, Silva SR, Kendall C (1999) A method for nitrate collection for δ15N and δ18O analysis for water with low nitrate concentrations. Can J Fish Aquat Sci 56:1856–1864

    Article  Google Scholar 

  • Charola AE, Bläuer C (2015) Salts in masonry: an overview of the problem. Restaur Build Monum 21:119–135

    Google Scholar 

  • Chukanov NV, Aksenov SM, Rastsvetaeva RK, Pekov IV, Belakovskiy DI, Britvin SN (2015) Mohnite, (NH4)K2Na(SO4)(2), a new guano mineral from Pabellon de Pica, Chile. Mineral Petrol 109:643–648

    Article  Google Scholar 

  • Doehne E (2002) Salt weathering: a selective review. Geological Society. Special Publications, London, pp 51–64

    Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Ham WE (ed) Classification of carbonate rocks. American Association of Petroleum Geologists, Memoirs, pp 108–121

    Google Scholar 

  • Evans IS (1970) Salt crystallization and rock weathering: a review. Revue de Géomorphol Dyn N 4:153–177

    Google Scholar 

  • Fassina V. (1997): Physical and chemical properties of aerosols and of sea-salt particles, Scienze e materiali del patrimonio culturale (2): la pietra dei monumenti in ambiente fisico e culturale. R.A. Lefèvre éd. edipuglia, Bari, 89–107.

  • Flatt RJ, Caruso F, Sanchez AMA, Scherer GW (2014) Chemomechanics of salt damage in stone. Nat Commun 5:4823. https://doi.org/10.1038/ncomms5823

    Article  Google Scholar 

  • Flatt RJ, Mohamed NA, Caruso F, Derluyn H, Desarnaud J, Lubelli B, Espinosa-Marzal RM, Pel L, Rodriguez-Navarro C, Scherer G, Shahidzadeh N, Steiger M (2017) Predicting salt damage in practice: a theoretical insight into laboratory tests. RILEM Tech Lett. https://doi.org/10.21809/rilemtechlett.2017.41

    Article  Google Scholar 

  • Folk RL (1959) Practical petrographical classification of limestones. Am Assoc Pet Geol Bull 43:1–38

    Google Scholar 

  • Girardin J., 1864. Des fumiers et autres engrais animaux. Ed. Garnier frères et Masson et fils.

  • Godts S, Hayen R, De Clercq H (2017) Investigating salt dacay of stone materials related to the environment, a case study in the St James church in Liège Belgium. Stud Conserv 62(6):329–342

    Article  Google Scholar 

  • Gómez-Heras M, Benavente D, Álvarez de Buergo M, Fort R (2004) Soluble salt minerals from pigeon droppings as potential contributors to the decay of stone based cultural Heritage. Eur J Mineral 16:505–509

    Article  Google Scholar 

  • Hammecker C (1995) The importance of the petrophysical properties and external factors in the stone decay on monuments PAGEOPH. Pure Appl Geophys 145:2. https://doi.org/10.1007/BF00880275

    Article  Google Scholar 

  • Hosono T, Uchida E, Suda C, Ueno A, Nakagawa T (2006) Salt weathering of sandstone at the Angkor monuments, Cambodia: identification of the origins of salts using sulfur and strontium isotopes. J Archaeol Sci 33:1541–1551

    Article  Google Scholar 

  • Jurgens M., 1970. Le colombier de Créteil, histoire d’une ancienne propriété de l’Hôtel-Dieu de Paris. Etudes et documents, fascicule 3. 75 pages. Centre de recherche d’histoire et de philologie de la IVe section de l’Ecole Pratique des Hautes Etudes. Département d’histoire de Paris et de la région parisienne.

  • Kendall C, Elliott EM, Wankel SD (2007) Tracing anthropogenic inputs of nitrogen to ecosystems. In: Lajtha K, Michener RH (eds) Stable isotopes in ecology and environmental science, 2nd edn. Blackwell Scientific Publications, Hoboken. https://doi.org/10.1002/9780470691854.ch12

    Chapter  Google Scholar 

  • Kloppmann W, Bromblet P, Vallet JM, Vergès-Belmin V, Rolland O, Guerrot C, Gosselin C (2011) Buildings materials as intrinsic sources of sulphate: a hidden face of salt weathering of historical monuments investigated through multi-isotope tracing (B, O, S). Sci Total Environ 409:1658–1669

    Article  Google Scholar 

  • Kloppmann W, Rolland O, Proust E, Montech AT (2014) Soluble salt sources in medieval porous limestone sculptures: a multi-isotope (N, O, S) approach. Sci Total Environ 470:559–566

    Article  Google Scholar 

  • Kloppmann W., Verges-Belmin V., Rolland O., Bromblet P., Vallet J. M., Gosselin C. (2008) Néoformation de sulfates comme facteur de dégradation des pierres des monuments. Détermination par traçage isotopique (B, O, S) des sources internes et externes du soufre. Technè, 2008, numéro hors-série, 114–119.

  • Kramar S, Mirtic B, Knoeller K, Rogan-Smuc N (2011) Weathering of the black limestone of historical monuments (Ljubljana, Slovenia): Oxygen and sulfur isotope composition of sulfate salts. Appl Geochem 26:1632–1638

    Article  Google Scholar 

  • Menendez B (2017) Estimation of salt mixture damage on built cultural heritage from environmental conditions using ECOS-RUNSALT model. J Cult Herit 24:22–30

    Article  Google Scholar 

  • Millot R, Petelet-Giraud E, Guerrot C, Négrel P (2010) Multi-isotopic composition (δ7Li-δ11B-δD-δ18O) of rainwaters in France: origin and spatio-temporal characterization. Appl Geochem 25:1510–1524

    Article  Google Scholar 

  • Mizota C, Hosono T, Matsunaga M, Okumura A (2018) Dual (oxygen and nitrogen) isotopic characterization of the museum archived nitrates from the United States of America, South Africa and Australia. Sci Total Environ 625:627–632

    Article  Google Scholar 

  • Ordonez S, La Iglesia A, Louis M, Garcia-del-Cura M (2016) Mineralogical evolution of salt over nine years, after removal of efflorescence and saline crusts from Elche’s Old Bridge (Spain). Constr Buil Mater 112:343–354. https://doi.org/10.1016/j.conbuildmat.2016.02.123

    Article  Google Scholar 

  • Osborne MC, Jass CN (2008) The relationship of mineralogical data to paleontological questions: a case study from cathedral cave, White Pine County, Nevada. J Cave Karst Stud 70(3):156–162

    Google Scholar 

  • Prévost J (1985) Déplacements d’immeubles. Rev Fr de Géotech. https://doi.org/10.1051/geotech/1985033061

    Article  Google Scholar 

  • Price C (2000) An expert chemical model for determining the environmental conditions needed to prevent salt damage in porous materials. European Commission Research Report No 11, (Protection and Conservation of European Cultural Heritage). Archetype Publications, London, pp 65–78

    Google Scholar 

  • Prikryl R, Svobodova J, Zak K, Hradil D (2004) Anthropogenic origin of salt crusts on sandstone sculptures of Prague’s Charles Bridge (Czech Republic): evidence of mineralogy and stable isotope geochemistry. Eur J Mineral 16:609–618

    Article  Google Scholar 

  • Ricciardi M, Pironti C, Motta O, Fiorillo R, Camin F, Faggiano A, Proto A (2021) Investigations on historical monuments’deterioration through chemical and isotopic analyses: an Italian case study. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-15103-x

    Article  Google Scholar 

  • Rivas T, Pozo S, Paz M (2014) Sulphur and oxygen isotope analysis to identify sources of sulphur in gypsum-rich black crusts developed on granites. Sci Total Environ 482–483:137–147

    Article  Google Scholar 

  • Sabbioni C, Brimblecombe P, Cassar M (2010) The atlas of climate change impact on european cultural heritage: scientific analysis and management strategies. Anthen Press, London

    Google Scholar 

  • Siedel H (2018) Salt efflorescence as indicator for sources of damaging salts on historic buildings and monuments: a statistical approach. Environ Earth Sci. https://doi.org/10.1007/s12665-018-7752-4

    Article  Google Scholar 

  • Siedel H, Pfefferkorn S, von Plehwe-Leisen E, Leisen H (2010) Sandstone weathering in tropical climate: results of low-destructive investigations at the temple of Angkor Wat, Cambodia. Eng Geol 115:182–192

    Article  Google Scholar 

  • Silva SR, Kendall C, Wilkinson DH, Ziegler AC, Chang CCY, Avanzino RJ (2000) A new method for collection of nitrate from fresh water and the analysis of nitrogen and oxygen isotope ratios. J Hydrol 228:22–36

    Article  Google Scholar 

  • Snow MA, Pring A, Allen N (2014) Minerals of the wooltana cave, flinders ranges, South Australia. Trans R Soc S Aust 138(2):214–230. https://doi.org/10.1080/03721426.2014.11649009

    Article  Google Scholar 

  • Song W, Wang Y-L, Yang W, Sun X-C, Tong Y-D, Wang X-M, Liu C-Q, Bai Z-P, Liu X-Y (2019) Isotopic evaluation on relative contributions of major NOx sources to nitrate of PM2.5 in Beijing. Environ Pollut 248:183–190

    Article  Google Scholar 

  • Steiger M (2016) Air pollution damage to stone. In: Brimblecombe P (ed) Air Pollution reviews n°5. Urban Pollution and Changes to Materials and Building Surfaces. Imperial College Press, London, pp 65–101

    Google Scholar 

  • Steiger M, Charola AE, Sterflinger K (2014) Weathering and Deterioration. In: Siegesmund S, Snethlage R (eds) Stone in Architecture. Springer-Verlag, Berlin Heidelberg, pp 225–316

    Chapter  Google Scholar 

  • Tang IN, Munkelwitz HR (1993) Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols. Atmos Environ 27A(4):467–473

    Article  Google Scholar 

  • Vallet JM, Gosselin C, Bromblet P, Rolland O, Verges-Belmin V, Kloppmann W (2006) Origin of salts in stone monument degradation using sulphur and oxygen isotopes: first results of the bourges cathedral (France). J Geochem Explor 88:358–362

    Article  Google Scholar 

  • Vazquez P, Thomachot-Schneider C, Mouhoubi K, Bodnar JL, Avdelidis NP, Charles D, Benavente D (2018) Sodium sulfate crystallization monitoring using IR Thermography. Infrared Phys Technol 89:231–241

    Article  Google Scholar 

  • Viollet-le-Duc E-E (1859) Dictionnaire raisonné de l'architecture française du XIe au XVIe siècle, Paris, tome 3, p 512. https://fr.wikisource.org/wiki/Dictionnaire_raisonn%C3%A9_de_l%E2%80%99architecture_fran%C3%A7aise_du_XIe_au_XVIe_si%C3%A8cle/Colombier

  • Zehnder K, Arnold A (1989) Crystal growth in salt efflorescence. J Cryst Growth 97:513–521

    Article  Google Scholar 

  • Zehnder K, Schoch O (2009) Efflorescence of mirabillite, epsomite and gypsum traced by automated monitoring on-site. J Cult Herit 10:319–330

    Article  Google Scholar 

  • Zinszner B, Meynot C (1982) Visualisation des propriétés capillaires des roches reservoirs. Rev Inst Fr Pétrole 37:337–361

    Article  Google Scholar 

  • Zinszner B, Pellerin FM (2007) A Geoscientist's Guide to Petrophysics, Technip editions. IFP Publications, p 384

    Google Scholar 

Download references

Funding

This research was financed by all the laboratories from their own funds.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analyses were performed by all authors in their speciality. The first draft of the manuscript was written by Anne Chabas and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Anne Chabas.

Ethics declarations

Conflict of interest

The authors have not disclosed any funding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chabas, A., Kloppmann, W., Sizun, JP. et al. Sources and chronology of soluble salt formation in a medieval dovecote caught up in urbanisation: a resilience story?. Environ Earth Sci 81, 550 (2022). https://doi.org/10.1007/s12665-022-10665-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-022-10665-6

Keywords

Navigation