Skip to main content

Advertisement

Log in

Rapid ground subsidence in the Küçük Menderes Graben (W. Turkey) captured by Sentinel-1 SAR data

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Over the past few decades, surface deformations have been observed and measured geodetically at many places all over the world, including Central and western Turkey. Surface deformations in some of these regions have been attributed to aseismic slip-on faults and/or to excessive pumping of groundwater. In this study, we present our investigation on the ground subsidence in Ödemiş town (W. Turkey) located in the Küçük (K.) Menderes Graben where one of the most severe and widespread surface fracturings has been reported. The entire graben is analyzed using the Sentinel-1 synthetic aperture radar (SAR) data with multi-temporal interferometric SAR techniques. A total of 342 single look complex products acquired in 2015–2018 are processed using the Small Baseline Subset method. Vertical mean velocity fields reveal that K. Menderes Graben is experiencing extensive subsidence at rates reaching as much as 29 cm/year, making it one of the fastest subsiding regions in the world. The spatial correlation between the subsiding regions and the unconsolidated sediments suggests that the subsidence is most probably due to over drafting of the groundwater, which is confirmed by the strong temporal correlation between displacement time series and groundwater level changes. Inelastic/elastic deformation ratios calculated for the entire graben suggest that inelastic deformation is the dominant component in the region, implying an irreversible deformation. Skeletal storage coefficients calculated at well locations also support the idea of inelastic deformation. However, severe inelasticity is not extensive, and the region may still recover from subsidence with correct groundwater management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  • Armaş I, Mendes DA, Popa RG, Gheorghe M, Popovici D (2017) Long-term ground deformation patterns of Bucharest using multi-temporal InSAR and multivariate dynamic analyses: a possible transpressional system? Sci Rep 7(1):1–13

    Article  Google Scholar 

  • Aslan G, Cakir Z, Lasserre C, Renard F (2019) Investigating subsidence in the bursa plain, Turkey, using ascending and descending Sentinel-1 satellite data. Remote Sens 11(1):85

    Article  Google Scholar 

  • Aslan G, Foumelis M, Raucoules D, De Michele M, Bernardie S, Cakir Z (2020) Landslide mapping and monitoring using persistent scatterer interferometry (psi) technique in the French alps. Remote Sens 12(8):1305

    Article  Google Scholar 

  • Bacques G, de Michele M, Raucoules D, Aochi H, Rolandone F (2018) Shallow deformation of the San Andreas fault 5 years following the 2004 Parkfield earthquake (Mw6) combining ERS2 and Envisat InSAR. Sci Rep 8(1):1–10

    Article  Google Scholar 

  • Bekaert DP, Handwerger AL, Agram P, Kirschbaum DB (2020) InSAR-based detection method for mapping and monitoring slow-moving landslides in remote regions with steep and mountainous terrain: an application to nepal. Remote Sens Environ 249:111983

    Article  Google Scholar 

  • Bell JW, Amelung F, Ferretti A, Bianchi M, Novali F (2008) Permanent scatterer InSAR reveals seasonal and long-term aquifer-system response to groundwater pumping and artificial recharge. Water Resour Res 44(2)

  • Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens 40(11):2375–2383

    Article  Google Scholar 

  • Besoya M, Govil H, Bhaumik P (2021) A review on surface deformation evaluation using multitemporal SAR interferometry techniques. Spatial Information Research 29(3):267–280. https://doi.org/10.1007/s41324-020-00344-8

    Article  Google Scholar 

  • Biggs J, Wright TJ (2020) How satellite InSAR has grown from opportunistic science to routine monitoring over the last decade. Nat Commun 11(1):1–4

    Article  Google Scholar 

  • Bletery Q, Cavalié O, Nocquet JM, Ragon T (2020) Distribution of interseismic coupling along the north and east anatolian faults inferred from InSAR and GPS data. Geophys Res Lett 47(16):e2020GL087775

    Article  Google Scholar 

  • Chang L, Ku O, Hanssen RF (2019) Identification of deformation pattern changes caused by enhanced oil recovery (EOR) using InSAR. Int J Remote Sens 40(4):1495–1505

    Article  Google Scholar 

  • Chaussard E, Milillo P, Bürgmann R, Perissin D, Fielding EJ, Baker B (2017) Remote sensing of ground deformation for monitoring groundwater management practices: application to the Santa Clara valley during the 2012–2015, California drought. J Geophys Res Solid Earth 122(10):8566–8582

    Article  Google Scholar 

  • Chen CW, Zebker HA (2002) Phase unwrapping for large SAR interferograms: statistical segmentation and generalized network models. IEEE Trans Geosci Remote Sens 40(8):1709–1719

    Article  Google Scholar 

  • Chen J, Knight R, Zebker HA, Schreüder WA (2016) Confined aquifer head measurements and storage properties in the san Luis valley, Colorado, from spaceborne InSAR observations. Water Resour Res 52(5):3623–3636

    Article  Google Scholar 

  • Crosetto M, Monserrat O, Cuevas-González M, Devanthéry N, Crippa B (2016) Persistent scatterer interferometry: a review. ISPRS J Photogramm Remote Sens 115:78–89

    Article  Google Scholar 

  • Crosetto M, Solari L, Balasis-Levinsen J, Casagli N, Frei M, Oyen A, Moldestad D (2020) Ground deformation monitoring at continental scale: the European ground motion service. Int Arch Photogramm Remote Sens Spat Inf Sci 43:293–298

    Article  Google Scholar 

  • D’Amico F, Gagliardi V, Ciampoli LB, Tosti F (2020) Integration of InSAR and GPR techniques for monitoring transition areas in railway bridges. NDT E Int 115:102291

    Article  Google Scholar 

  • Daubechies I (2009) The wavelet transform, time-frequency localization and signal analysis. Princeton University Press, Princeton

    Book  Google Scholar 

  • De Luca C, Zinno I, Manunta M, Lanari R, Casu F (2017) Large areas surface deformation analysis through a cloud computing p-sbas approach for massive processing of dInSAR time series. Remote Sens Environ 202:3–17

    Article  Google Scholar 

  • Dehls JF, Larsen Y, Marinkovic P, Lauknes TR, Stødle D, Moldestad DA (2019) InSAR. no: A national InSAR deformation mapping/monitoring service in Norway-from concept to operations. In: IGARSS 2019-2019 IEEE international geoscience and remote sensing symposium. IEEE, pp 5461–5464

  • Demirtaş R, Yaman M, Tepeuğur E (2002) Ödemiş’de Yüzeyde Oluşan Deformasyonların Oluşum Mekanizması. https://www.academia.edu/8775970/. Accessed 04 Jan 2021

  • Demirtaş R, Ercan S, Demir B, Aktan M (2021) Ege Çöküntü Alanında Son 20 Yıl Süresince Oluşmuş ve Oluşmaya Devam Eden Yüzey Deformasyonları Deprembilimcilere Ne Söylemeye Çalışıyor? https://www.academia.edu/8775613/. Accessed 04 Jan 2021

  • Dubertret L, Kalafatcioglu A (1973) 1:500000 ölçekli Türkiye Jeolojik Harita ve izahnamesi-izmir Paftası. MTA Yayınl

  • Dumont JF, Uysal ŞŞŞ, Karamanderesi IH, Letouzey J (1979) Formation of the grabens in southwestern anatolia. Maden Tetkik ve Arama Dergisi 92(92):7–18

    Google Scholar 

  • Elliott J, de Michele M, Gupta H (2020) Earth observation for crustal tectonics and earthquake hazards. Surv Geophys 41(6):1355–1389

    Article  Google Scholar 

  • Emil MK, Sultan M, Alakhras K, Sataer G, Gozi S, Al-Marri M, Gebremichael E (2021) Countrywide monitoring of ground deformation using InSAR time series: a case study from qatar. Remote Sens 13(4):702

    Article  Google Scholar 

  • Emre Ö, Duman TY, Özalp S, Şaroğlu F, Olgun Ş, Elmacı H, Can T (2018) Active fault database of turkey. Bull Earthq Eng 16(8):3229–3275

    Article  Google Scholar 

  • Eris E, Cavus Y, Aksoy H, Burgan HI, Aksu H, Boyacioglu H (2020) Spatiotemporal analysis of meteorological drought over kucuk menderes river basin in the Aegean region of turkey. Theor Appl Climatol 142(3):1515–1530

    Article  Google Scholar 

  • Ezquerro P, Herrera G, Marchamalo M, Tomás R, Béjar-Pizarro M, Martínez R (2014) A quasi-elastic aquifer deformational behavior: Madrid aquifer case study. J Hydrol 519:1192–1204

    Article  Google Scholar 

  • Fadhillah MF, Achmad AR, Lee CW (2020) Integration of InSAR time-series data and GIS to assess land subsidence along subway lines in the Seoul metropolitan area. South Korea. Remote Sens 12(21):3505

    Article  Google Scholar 

  • Fan H, Wang L, Wen B, Du S (2021) A new model for three-dimensional deformation extraction with single-track InSAR based on mining subsidence characteristics. Int J Appl Earth Obs Geoinf 94:102223

    Google Scholar 

  • Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L et al (2007) The shuttle radar topography mission. Rev Geophys 45(2)

  • Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39(1):8–20

    Article  Google Scholar 

  • Gee D, Sowter A, Grebby S, de Lange G, Athab A, Marsh S (2019) National geohazards mapping in Europe: interferometric analysis of the Netherlands. Eng Geol 256:1–22

    Article  Google Scholar 

  • Gheorghe M, Armaş I, Dumitru P, Călin A, Bădescu O, Necsoiu M (2020) Monitoring subway construction using Sentinel-1 data: a case study in Bucharest, Romania. Int J Remote Sens 41(7):2644–2663

    Article  Google Scholar 

  • Goldstein RM, Werner CL (1998) Radar interferogram filtering for geophysical applications. Geophys Res Lett 25(21):4035–4038

    Article  Google Scholar 

  • Gülersoy AE, Çelik MA (2015) Determining of areas with high erosion risk in küçük menderes river basin (west anatolia, turkey) by using multi-criteria decision making method. Fresenius Environ Bull 24(1a):195–202

    Google Scholar 

  • Guzy A, Malinowska AA (2020) State of the art and recent advancements in the modelling of land subsidence induced by groundwater withdrawal. Water 12(7):2051

    Article  Google Scholar 

  • Haghighi MH, Motagh M (2019) Ground surface response to continuous compaction of aquifer system in Tehran, Iran: results from a long-term multi-sensor InSAR analysis. Remote Sens Environ 221:534–550

    Article  Google Scholar 

  • Halicioglu K, Erten E, Rossi C (2021) Monitoring deformations of Istanbul metro line stations through Sentinel-1 and levelling observations. Environ Earth Sci 80(9):1–10

    Article  Google Scholar 

  • Hanssen R, Usai S (1997) Interferometric phase analysis for monitoring slow deformation processes. ESA SP (Print) pp 487–491

  • He XC, Yang TL, Shen SL, Xu YS, Arulrajah A (2019) Land subsidence control zone and policy for the environmental protection of Shanghai. Int J Environ Res Public Health 16(15):2729

    Article  Google Scholar 

  • Herrera-García G, Ezquerro P, Tomás R, Béjar-Pizarro M, López-Vinielles J, Rossi M, Mateos RM, Carreón-Freyre D, Lambert J, Teatini P et al (2021) Mapping the global threat of land subsidence. Science 371(6524):34–36

    Article  Google Scholar 

  • Hoffmann J, Zebker HA, Galloway DL, Amelung F (2001) Seasonal subsidence and rebound in las Vegas Valley, Nevada, observed by synthetic aperture radar interferometry. Water Resour Res 37(6):1551–1566

    Article  Google Scholar 

  • Hooper A, Bekaert D, Spaans K, Arıkan M (2012) Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 514:1–13

    Article  Google Scholar 

  • Hu J, Li Z, Ding X, Zhu J, Zhang L, Sun Q (2014) Resolving three-dimensional surface displacements from InSAR measurements: a review. Earth Sci Rev 133:1–17

    Article  Google Scholar 

  • Hu J, Ding X, Li Z, Zhang L, Zhu J, Sun Q, Gao G (2016) Vertical and horizontal displacements of Los angeles from InSAR and GPS time series analysis: resolving tectonic and anthropogenic motions. J Geodyn 99:27–38

    Article  Google Scholar 

  • Hyndman RJ, Athanasopoulos G (2018) Forecasting: principles and practice. OTexts

  • Imamoglu M, Kahraman F, Cakir Z, Sanli FB (2019) Ground deformation analysis of bolvadin (w turkey) by means of multi-temporal InSAR techniques and Sentinel-1 data. Remote Sens 11(9):1069

    Article  Google Scholar 

  • Izmir V (2019) Nehir havza yönetim planı nihai raporu. Tech. rep., T.C. İzmir Valiliği Çevre Ve Şehircilik İl Müdürlüğü

  • Kalia A, Frei M, Lege T (2017) A copernicus downstream-service for the nationwide monitoring of surface displacements in Germany. Remote Sens Environ 202:234–249

    Article  Google Scholar 

  • Klees R, Massonnet D (1998) Deformation measurements using SAR interferometry: potential and limitations. Geol Mijnb 77(2):161–176

    Article  Google Scholar 

  • KOERI (2021) B.U. KOERI-RETMC Earthquake Catalogue. Boğaziçi University Kandilli Observatory and Earthquake Research Institute Regional Earthquake-Tsunami Monitoring Center. http://www.koeri.boun.edu.tr/sismo/2/earthquake-catalog/. Accessed 04 Jan 2021

  • Lanari R, Bonano M, Casu F, Luca CD, Manunta M, Manzo M, Onorato G, Zinno I (2020) Automatic generation of Sentinel-1 continental scale dInSAR deformation time series through an extended p-sbas processing pipeline in a cloud computing environment. Remote Sens 12(18):2961

    Article  Google Scholar 

  • Lanari R, Reale D, Bonano M, Verde S, Muhammad Y, Fornaro G, Casu F, Manunta M (2020) Comment on “pre-collapse space geodetic observations of critical infrastructure: the morandi bridge genoa Italy” by milillo et al. (2019). Remote Sens 12(24):4011

    Article  Google Scholar 

  • Lauknes T, Shanker AP, Dehls J, Zebker H, Henderson I, Larsen Y (2010) Detailed rockslide mapping in Northern Norway with small baseline and persistent scatterer interferometric SAR time series methods. Remote Sens Environ 114(9):2097–2109

    Article  Google Scholar 

  • Lazeckỳ M, Spaans K, González PJ, Maghsoudi Y, Morishita Y, Albino F, Elliott J, Greenall N, Hatton E, Hooper A et al (2020) LiCSAR: an automatic InSAR tool for measuring and monitoring tectonic and volcanic activity. Remote Sens 12(15):2430

    Article  Google Scholar 

  • LiCSAR (2021) COMET-LiCS Sentinel-1 InSAR Portal. Available online. https://comet.nerc.ac.uk/COMET-LiCS-portal/. Accessed 04 Jan 2021

  • Luo X, Wang C, Long Y, Yi Z (2020) Analysis of the decadal kinematic characteristics of the Daguangbao landslide using multiplatform time series InSAR observations after the Wenchuan earthquake. J Geophys Res Solid Earth 125(12):e2019JB019325

    Article  Google Scholar 

  • Morishita Y (2021) Nationwide urban ground deformation monitoring in japan using Sentinel-1 LiCSAR products and LiCSBAS. Prog Earth Planet Sci 8(1):1–23

    Article  Google Scholar 

  • Morishita Y, Lazecky M, Wright TJ, Weiss JR, Elliott JR, Hooper A (2020) LiCSBAS: an open-source InSAR time series analysis package integrated with the LiCSAR automated Sentinel-1 InSAR processor. Remote Sens 12(3):424

    Article  Google Scholar 

  • Osmanoğlu B, Sunar F, Wdowinski S, Cabral-Cano E (2016) Time series analysis of InSAR data: methods and trends. ISPRS J Photogramm Remote Sens 115:90–102

    Article  Google Scholar 

  • Ozkaymak C, Sozbilir H, Gecievi MO, Tiryakioglu I (2019) Late holocene coseismic rupture and aseismic creep on the bolvadin fault, afyon akşehir graben, western anatolia. Turk J Earth Sci 28(6):787–804

    Google Scholar 

  • Peksezer A (2010) Artificial recharge of groundwater in küçük menderes river basin, turkey. Master’s thesis, METU

  • Pepe A, Calò F (2017) A review of interferometric synthetic aperture radar (InSAR) multi-track approaches for the retrieval of earth’s surface displacements. Appl Sci 7(12):1264

    Article  Google Scholar 

  • Poyraz F, Hastaoğlu KÖ (2020) Monitoring of tectonic movements of the gediz graben by the psInSAR method and validation with GNSS results. Arab J Geosci 13(17):1–11

    Article  Google Scholar 

  • Pusatli OT, Camur MZ, Yazicigil H (2009) Susceptibility indexing method for irrigation water management planning: applications to k Menderes river basin, Turkey. J Environ Manag 90(1):341–347

    Article  Google Scholar 

  • Rezaei A, Mousavi Z, Khorrami F, Nankali H (2020) Inelastic and elastic storage properties and daily hydraulic head estimates from continuous global positioning system (GPS) measurements in northern Iran. Hydrogeol J 28(2):657–672

    Article  Google Scholar 

  • Riley FS (1969) Analysis of borehole extensometer data from central California. Land Subsid 2:423–431

    Google Scholar 

  • Rojay B, Toprak V, Demirci C, Süzen L (2005) Plio-quaternary evolution of the küçük menderes graben southwestern anatolia, turkey. Geodin Acta 18(3–4):317–331

    Article  Google Scholar 

  • Şahin Y, Alper B, Tayfur G (2018) Küçük menderes havzası su kaynaklarının sürdürülebilirliği. DÜMF Mühendislik Dergisi 9(2):955–962

    Google Scholar 

  • Sayit AP, Yazicigil H (2012) Assessment of artificial aquifer recharge potential in the kucuk menderes river basin, turkey. Hydrogeol J 20(4):755–766

    Article  Google Scholar 

  • Selvakumaran S (2020) Interferometric synthetic aperture radar for remote satellite monitoring of bridges. Ph.D. thesis, University of Cambridge

  • Shen SL, Xu YS (2011) Numerical evaluation of land subsidence induced by groundwater pumping in shanghai. Can Geotech J 48(9):1378–1392

    Article  Google Scholar 

  • Shen SL, Ma L, Xu YS, Yin ZY (2013) Interpretation of increased deformation rate in aquifer iv due to groundwater pumping in shanghai. Can Geotech J 50(11):1129–1142

    Article  Google Scholar 

  • Solari L, Del Soldato M, Raspini F, Barra A, Bianchini S, Confuorto P, Casagli N, Crosetto M (2020) Review of satellite interferometry for landslide detection in italy. Remote Sens 12(8):1351

    Article  Google Scholar 

  • Staniewicz S, Chen J, Lee H, Olson J, Savvaidis A, Reedy R, Breton C, Rathje E, Hennings P (2020) InSAR reveals complex surface deformation patterns over an 80,000 km2 oil-producing region in the Permian basin. Geophys Res Lett 47(21):e2020GL090151

    Article  Google Scholar 

  • Svetunkov I (2022) Forecasting and analytics with ADAM. https://openforecast.org/adam/. Accessed 08 Feb 2022

  • Tang W, Zhao X, Motagh M, Bi G, Li J, Chen M, Chen H, Liao M (2022) Land subsidence and rebound in the Taiyuan basin, northern China, in the context of inter-basin water transfer and groundwater management. Remote Sens Environ 269:112792

    Article  Google Scholar 

  • Terzaghi K (1925) Principles of soil mechanics, iv-settlement and consolidation of clay. Eng News Rec 95(3):874–878

    Google Scholar 

  • TOB (2018) İzmir İli 2018 yılı Çevre durum raporu. Tech. rep., T.C. Tarım ve Orman Bakanlığı Su Yönetimi Genel Müdürlüğü

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78

    Article  Google Scholar 

  • Torres R, Snoeij P, Geudtner D, Bibby D, Davidson M, Attema E, Potin P, Rommen B, Floury N, Brown M et al (2012) Gmes Sentinel-1 mission. Remote Sens Environ 120:9–24

    Article  Google Scholar 

  • Weiss JR, Walters RJ, Morishita Y, Wright TJ, Lazecky M, Wang H, Hussain E, Hooper AJ, Elliott JR, Rollins C et al (2020) High-resolution surface velocities and strain for anatolia from Sentinel-1 InSAR and GNSS data. Geophys Res Lett 47(17):e2020GL087376

    Article  Google Scholar 

  • Xu YS, Yuan Y, Shen SL, Yin ZY, Wu HN, Ma L (2015) Investigation into subsidence hazards due to groundwater pumping from aquifer II in Changzhou, China. Nat Hazards 78(1):281–296

    Article  Google Scholar 

  • Xu X, Zhao D, Ma C, Lian D (2020) Monitoring subsidence deformation of suzhou subway using InSAR timeseries analysis. IEEE Access

  • Yagbasan O (2016) Impacts of climate change on groundwater recharge in küçük menderes river basin in western turkey. Geodin Acta 28(3):209–222

    Article  Google Scholar 

  • Yang Z, Li Z, Zhu J, Wang Y, Wu L (2020) Use of SAR/InSAR in mining deformation monitoring, parameter inversion, and forward predictions: a review. IEEE Geosci Remote Sens Mag 8(1):71–90

    Article  Google Scholar 

Download references

Acknowledgements

This is a part of the Ph.D. dissertation of Mümin Imamoglu. We thank you for using the facilities of TUBITAK BİLGEM and Yıldız Technical University, and also we thank the Republic of Turkey Ministry of Interior Disaster and Emergency Management Presidency (AFAD) for providing the active faults and geological settings maps of the study region.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mumin Imamoglu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imamoglu, M., Balik Sanli, F., Cakir, Z. et al. Rapid ground subsidence in the Küçük Menderes Graben (W. Turkey) captured by Sentinel-1 SAR data. Environ Earth Sci 81, 221 (2022). https://doi.org/10.1007/s12665-022-10339-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-022-10339-3

Keywords

Navigation