Skip to main content

Advertisement

Log in

Inelastic and elastic storage properties and daily hydraulic head estimates from continuous global positioning system (GPS) measurements in northern Iran

Evaluation des propriétés de stockage inélastique et élastique et de la charge hydraulique journalière à partir des mesures en continu du système mondial de positionnement (GPS) dans le Nord de l’Iran

Propiedades de los almacenamientos inelásticos y elásticos y estimaciones de la carga hidráulica diaria a partir de mediciones del sistema de posicionamiento global continuo (GPS) en el norte de Irán

伊朗北部连续全球定位系统(GPS)测量估算非弹性和弹性释水系数及日水头值

پارامترهای ذخیره غیرالاستیک و الاستیک آبخوان و تخمین تراز هیدرولیکی روزانه با استفاده از تراز ارتفاعی زمین حاصل از سیستم مکانیابی جهانی (GPS) در شمال ایران

Propriedades inelásticas e elásticas de armazenamento e estimativas diárias da carga hidráulica a partir de medições por sistema de posicionamento global contínuo (GPS) no norte do Irã

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

This study uses land measurements from the continuous global positioning system (GPS) covering the Gorgan Plain in northern Iran, over the period 2006–2016. The measurements show long-term displacements of about 84 cm downward, 17 cm northward, and 26 cm eastward relative to the International Terrestrial Reference Frame, and seasonal amplitudes of 25.19, 2.23, and 0.81 mm along vertical, north–south, and east–west directions, respectively, in the Gorgan confined-aquifer system (GCAS). Results indicate that the periodic signals in both vertical and horizontal displacements are consistent with seasonal head fluctuations in the GCAS, but the changes in horizontal components appear much later compared to the vertical component. The inelastic skeletal storativity is computed from GPS measurements to be as much as ~12 times greater than the elastic value. Moreover, the daily hydraulic heads reconstructed from well and GPS data jointly are consistent with head measurements from piezometers. Furthermore, the irreversible component of groundwater-storage (GWS) variations incorporated from dewatering of compacted aquitards (~0.62 m3/m2) is computed to be ~9.5 times greater than its recoverable component associated with aquifer units (0.0655 m3/m2). This study indicates that quantification of inelastic storativity and irreversible GWS in those aquifers of significant subsidence is essential for sustainable water resources management.

Résumé

La présente étude utilise des mesures de terrain provenant du système mondial de positionnement (GPS) continu couvrant la Plaine de Gorgan dans le Nord de l’Iran, sur la période 2006–2016. Les mesures montrent des déplacements de long terme d’environ 84 cm vers le bas, 17 cm vers le Nord et 26 cm vers l’Est selon le Cadre de Référence Terrestre International, et des amplitudes saisonnières de 25.19, 2.23, and 0.81 mm selon la verticale et les directions nord–sud, et est–ouest respectivement, dans le système aquifère captif de Gorgan (SACG). Les résultats indiquent que les signaux périodiques, tant pour les déplacements verticaux que pour les déplacements horizontaux, sont cohérents avec les fluctuations saisonnières de la charge hydraulique dans le SACG, mais que les variations apparaissent beaucoup plus tard dans la composante horizontale que dans la composante verticale. La capacité de stockage du squelette inélastique est. estimée d’après les mesures de GPS à environ 12 fois la valeur élastique. De plus, les charges hydrauliques journalières, reconstituées à partir des données de forage et de GPS conjointement, sont cohérentes avec les mesures de charge des piézomètres. En outre, la composante irréversible des variations du stockage des eaux souterraines (SES) résultant du dénoyage des aquitards compactés (~0.62 m3/m2) est. estimée à ~9.5 fois la composante récupérable associée aux unités aquifères (0.0655 m3/m2). Cette étude montre que la quantification de la capacité de stockage inélastique et du SES irréversible dans ces aquifères à subsidence importante est. essentielle à la gestion durable des ressources en eau.

Resumen

Este estudio utiliza mediciones terrestres durante el período 2006–2016 del sistema de posicionamiento global continuo (GPS) cubriendo la llanura de Gorgan en el norte de Irán. Las mediciones muestran desplazamientos a largo plazo de unos 84 cm hacia abajo, 17 cm hacia el norte y 26 cm hacia el este en relación con el Marco de Referencia Terrestre Internacional, y amplitudes estacionales de 25.19, 2.23 y 0.81 mm a lo largo de las direcciones vertical, norte–sur y este–oeste, respectivamente, en el sistema de acuíferos confinados de Gorgan (GCAS). Los resultados indican que las señales periódicas tanto en desplazamientos verticales como horizontales son consistentes con las fluctuaciones estacionales de la carga hidráulica en el GCAS, pero los cambios en las componentes horizontales aparecen mucho más tarde en comparación con la componente vertical. El almacenamiento esquelético inelástico se calcula a partir de mediciones GPS para que sea hasta ~12 veces mayor que el valor elástico. Además, las cargas hidráulicas diarias reconstruidas a partir de datos de pozos y GPS son consistentes con las mediciones de carga hidráulica de los piezómetros. Además, se calcula que la componente irreversible de las variaciones en el almacenamiento de agua subterránea (GWS) incorporadas por el drenaje de acuitardos compactados (~0.62 m3/m2) es ~9.5 veces mayor que su componente recuperable asociado con unidades acuíferas (0.0655 m3/m2). Este estudio indica que la cuantificación del almacenamiento inelástico y los GWS irreversibles en los acuíferos de subsidencia significativa es esencial para la gestión sostenible de los recursos hídricos.

摘要

本研究利用了伊朗北部Gorgan平原2006–2016年期间的连续全球定位系统(GPS)土地测量数据。测量数据显示, 相对于国际地面参考系统, Gorgan承压含水层系统(GCAS)长期位移大约向下偏移84 cm, 北移17 cm, 东移26 cm, 而且沿垂向、南北和东西方向的季节性振幅分别为25.19、2.23和0.81 mm。结果还表明垂向和水平位移的周期信号都与GCAS水头的季节性波动一致, 但水平分量的波动比垂向分量的波动晚得多。根据GPS测量结果计算出的非弹性骨架释水系数约是弹性值的约12倍。此外, 通过联合井和GPS数据重建的日水头值与测压计的测量结果是一致的。而且, 压实弱透水层排水产生的地下水储量(GWS)变化的不可逆部分(约0.62 m3/m2)比含水层单位面积的可恢复水量(0.0655 m3/m2)大约9.5倍。本研究表明, 在有明显沉降的含水层中非弹性释水系数和不可恢复的地下水储量的定量化对于水资源可持续管理十分重要。

چکیده

این مطالعه از دادههای تراز ارتفاعی زمین حاصل از سیستم مکانیابی جهانی (GPS) در دشت گرگان، شمال ایران، برای دوره 2006 تا 2016 استفاده کرده است. داده‌‌ها نشان می‌دهند که جابجایی بلند مدتی معادل cm 84 در جهت قائم رو به پایین، cm 17 به سمت شمال، و cm 26 به سمت شرق نسبت به فریم مبنای International Terrestrial رخ داده است. به علاوه، مولفه فصلی این جابجایی‌ها به ترتیب 25.19، 2.23، و 0.81 میلیمتر (mm) در راستای قائم، شمالی–جنوبی، و شرقی–غربی در سیستم آبخوان محبوس گرگان (GCAS) بدست آمد. نتایج حاکی از این است که سیگنال‌های پریودیک تراز زمین در هر دوی راستاهای قائم و افقی با نوسانات فصلی تراز هیدرولیکی آبخوان GCAS همخوانی دارند، اما تغییرات مولفههای افقی تراز زمین خیلی دیرتر از تغییرات مولفه قائم تراز زمین رخ می‌دهند. ضریب ذخیره اسکلتون غیرالاستیک آبخوان همچنین از دادههای GPS بدست آمد که بطور جالب توجه مقدار آن حدود 12 بار بزرگتر از مولفه الاستیک ضریب ذخیره اسکلتون است. همچنین، داده‌های تراز هیدرولیکی روزانه که از تلفیق داده‌های GPS و هیدروژئولوژیکی بدست آمد با دادههای مشاهداتی در محل پیزومترها همخوانی قابل قبولی دارند. در این پژوهش مولفه غیرقابل بازگشت تغییرات ذخیره آبخوان، که حاصل تحکیم آکیوتاردها است، نیز محاسبه شد (حدود 0.62 m3/m2) و مقدار آن حدود 9.5 برابر بزرگتر از مقدار مولفه قابل بازگشت تغییرات ذخیره آبخوان (0.0655 m3/m2) بدست آمد. این مطالعه نشان می‌دهد که تعیین مولفه غیرالاستیک ضریب ذخیره و مولفه غیرقابل بازگشت تغییرات ذخیره در آبخوان‌هایی که متحمل فرونشست چشمگیر شده‌اند، برای مدیریت بهینه و پایدار منابع آبی امری ضروری است.

Resumo

Este estudo utiliza medições de superfície do sistema de posicionamento global (GPS) contínuo que cobre a planície de Gorgan, no norte do Irã, no período 2006–2016. As medições mostram deslocamentos de longo prazo de cerca de 84 cm para baixo, 17 cm para norte e 26 cm para leste em relação ao Quadro de Referência Terrestre Internacional e amplitudes sazonais de 25.19, 2.23 e 0.81 mm ao longo das direções verticais, norte–sul e leste–oeste, respectivamente, no sistema de aquíferos confinados de Gorgan (SACG). Os resultados indicam que os sinais periódicos nos deslocamentos vertical e horizontal são consistentes com as flutuações sazonais da carga no SACG, mas as alterações nos componentes horizontais aparecem muito mais tarde em comparação com o componente vertical. A estocabilidade estrutural inelástica é calculada a partir de medições de GPS como aproximadamente 12 vezes maior que o valor elástico. Além disso, as cargas hidráulicas diárias recuperadas do poço e os dados do GPS em conjunto são consistentes com as medições das cargas dos piezômetros. Além disso, o componente irreversível das variações de armazenamento de águas subterrâneas (AAS) incorporado a partir da descarga de aquitardos compactados (~0.62 m3/m2) é calculado como ~ 9.5 vezes maior que seu componente recuperável associado a unidades de aquíferos (0.0655 m3/m2). Este estudo indica que a quantificação da estocabilidade inelástica e da AAS irreversível nos aquíferos de subsidência significativa é essencial para o gerenciamento sustentável dos recursos hídricos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Béjar-Pizarro M, Ezquerro P, Herrera G, Tomás R, Guardiola-Albert C, Hernández JMR, Merodo JAF, Marchamalo M, Martínez R (2017) Mapping groundwater level and aquifer storage variations from InSAR measurements in the Madrid aquifer, central Spain. J Hydrol 547:678–689

    Article  Google Scholar 

  • Bell JW, Amelung F, Ferretti A, Bianchi M, Novali F (2008) Inelastic scatterer InSAR reveals seasonal and long-term aquifer-system response to groundwater pumping and artificial recharge. Water Resour Res 44(2)

  • Boni R, Cigna F, Bricker S, Meisina C, McCormack H (2016) Characterisation of hydraulic head changes and aquifer properties in the London Basin using persistent scatterer interferometry ground motion data. J Hydrol 540:835–849

    Article  Google Scholar 

  • Burbey TJ (2001) Storage coefficient revisited: is purely vertical strain a good assumption? Groundwater 39(3):458–464

    Article  Google Scholar 

  • Burbey TJ (2003) Use of time-subsidence data during pumping to characterize specific storage and hydraulic conductivity to semi-confining units. J Hydrol 281:3–22

    Article  Google Scholar 

  • Burbey TJ (2006) Three-dimensional deformation and strain induced by municipal pumping, part 2: numerical analysis. J Hydrol 330(3–4):422–434

    Article  Google Scholar 

  • Burbey TJ (2008) The influence of geologic structures on deformation due to ground water withdrawal. Groundwater 46(2):202–211

    Article  Google Scholar 

  • Burbey TJ, Helm DC (1999) Modeling three-dimensional deformation in response to pumping of unconsolidated aquifers. Environ Eng Geosci 2:199–212

    Article  Google Scholar 

  • Burbey TJ, Warner SM, Blewitt G, Bell JW, Hill E (2006) Three-dimensional deformation and strain induced by municipal pumping, part 1: analysis of field data. J Hydrol 319(1–4):123–142

    Article  Google Scholar 

  • Castellazzi P, Martel R, Rivera A, Huang J, Pavlic G, Calderhead AI, Garfias J, Salas J (2016) Groundwater depletion in central Mexico: use of GRACE and InSAR to support water resources management. Water Resour Res 52(8):5985–6003

    Article  Google Scholar 

  • Chaussard E, Bürgmann R, Shirzaei M, Fielding EJ, Baker B (2014) Predictability of hydraulic head changes and characterization of aquifer-system and fault properties from InSAR-derived ground deformation. J Geophys Res Solid Earth 119(8):6572–6590

    Article  Google Scholar 

  • Chen J, Knight, Zebker HA, Schreüder WA (2016) Confined aquifer head measurements and storage properties in the San Luis Valley, Colorado, from spaceborne InSAR observations. Water Resour Res 52(5):3623–3636

    Article  Google Scholar 

  • Chew CC, Small EE, Larson KM, Zavorotny VU (2013) Effects of near-surface soil moisture on GPS SNR data: development of a retrieval algorithm for soil moisture. IEEE T Geosci Remote 52(1):537–543

    Article  Google Scholar 

  • Ezquerro P, Herrera G, Marchamalo M, Tomás R, Béjar-Pizarro M, Martínez R (2014) A quasi-elastic aquifer deformational behavior: Madrid aquifer case study. J Hydrol 519:1192–1204

    Article  Google Scholar 

  • Ezquerro P, Guardiola-Albert C, Herrera G, Fernández-Merodo JA, Béjar-Pizarro M, Bonì R (2017) Groundwater and subsidence modeling combining geological and multi-satellite SAR data over the alto Guadalentín aquifer (SE Spain). Geofluids 2017

  • Fetter CW (2001) Applied hydrogeology, 4th edn. Prentice Hall, Upper Saddle River, NJ, 102 pp

    Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ, 604 pp

    Google Scholar 

  • Fu Y, Freymueller JT (2012) Seasonal and long-term vertical deformation in the Nepal Himalaya constrained by GPS and GRACE measurements. J Geophys Res Solid Earth 117(B3)

  • Galloway DL, Burbey TJ (2011) Review: Regional land subsidence accompanying groundwater extraction. Hydrogeol J 19(8):1459–1486

    Article  Google Scholar 

  • Galloway DL, Hudnut KW, Ingebritsen SE, Phillips SP, Peltzer G, Rogez F, Rosen PA (1998) Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resour Res 34(10):2573–2585

    Article  Google Scholar 

  • Gelb A (ed) (1974) Applied optimal estimation. MIT Press, Boston

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford Univ. Press, New York

  • Hoffmann J, Zebker HA, Galloway DL, Amelung F (2001) Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by synthetic aperture radar interferometry. Water Resour Res 37(6):1551–1566. https://doi.org/10.1029/2000WR900404

    Article  Google Scholar 

  • Herring TA, King RW, Floyd MA, McClusky SC (2015) Introduction to GAMIT/GLOBK, Release 10.6. Dept. of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Boston

  • Ireland RL, Poland JF, Riley FS (1984) Land subsidence in the San Joaquin Valley, California, as of 1980. US Geol Surv Prof Pap 437-I, 93 pp

  • Ji KH, Herring TA (2012) Correlation between changes in groundwater levels and surface deformation from GPS measurements in the San Gabriel Valley, California. Geophys Res Lett 39(1)

    Article  Google Scholar 

  • Jiang L, Bai L, Zhao Y, Cao G, Wang H, Sun Q (2018) Combining InSAR and hydraulic head measurements to estimate aquifer parameters and storage variations of confined aquifer system in Cangzhou, North China plain. Water Resour Res 54(10):8234–8252

    Article  Google Scholar 

  • Kankash Omra Consulting (2009) Data analysis and water budget calculation in catchment area of the Gorganrood-Ghareso Rivers, 3rd section: groundwater (in Persian). Integration of water resources, Golestan Regional Water Authority, Gorgan, Iran

  • Kholghi M, Hosseini SM (2009) Comparison of groundwater level estimation using neuro-fuzzy and ordinary kriging. Environ Model Assess 14(6):729

    Article  Google Scholar 

  • Liu R, Zou R, Li J, Zhang C, Zhao B, Zhang Y (2018) Vertical displacements driven by groundwater storage changes in the North China plain detected by GPS observations. Remote Sens 10(2):259

    Article  Google Scholar 

  • Mousavi Z (2013) Characterization of active fault behavior in eastern Iran using a combined geodetic (GPS and InSAR) and tectonic approach; implications on seismic hazard. PhD Thesis, Joseph Fourier University, Grenoble, France

  • Mousavi Z, Walpersdorf A, Walker RT, Tavakoli F, Pathier E, Nankali HR, Nilfouroushan F, Djamour Y (2013) Global positioning system constraints on the active tectonics of NE Iran and the South Caspian region. Earth Planet Sci Lett 377:287–298

    Article  Google Scholar 

  • Mousavi-Rouhbakhsh M (2001) Geology of the Caspian Sea (in Persian). Report, Geological Survey of Iran, Tehran

  • Ojha C, Shirzaei M, Werth S, Argus DF (2016) Quantifying large scale deformation and aquifer properties over Central Valley, California using a combination of InSAR, GPS and hydraulic head level data. In: AGU Fall Meeting Abstracts, San Francisco, December 2016. https://agu.confex.com/agu/fm16/meetingapp.cgi. Accessed December 2019

  • Radfar A, Chakdel AR, Nejati A, Soleimani M (2018) New insights into the structure of the South Caspian Basin from seismic reflection data, Gorgan plain, Iran. Int J Earth Sci 108(02):379–402

    Article  Google Scholar 

  • Reeves JA, Knight R, Zebker HA, Schreüder WA, Shanker Agram P, Lauknes TR (2011) High quality InSAR data linked to seasonal change in hydraulic head for an agricultural area in the San Luis Valley, Colorado. Water Resour Res 47(12)

  • Reeves JA, Knight R, Zebker HA, Kitanidis PK, Schreüder WA (2014) Estimating temporal changes in hydraulic head using InSAR data in the San Luis Valley, Colorado. Water Resour Res 50:4459–4473. https://doi.org/10.1002/2013WR014938

    Article  Google Scholar 

  • Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav S, Cakmak R, Ozener H, Kadirov F, Guliev I, Stepanyan R, Nadariya M (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res Solid Earth 111(B5)

    Article  Google Scholar 

  • Rezaei A (2018) Comments on “Quantifying groundwater exploitation induced subsidence in the Rafsanjan plain, southeastern Iran, using InSAR time-series and in situ measurements” by Motagh, M., Shamshiri, R., Haghighi, MH, Wetzel, HU, Akbari, B., Nahavandchi, H., … & Arabi, S.[Engineering Geology, 218 (2017), 134–151]. Eng Geol 246:417–419. https://doi.org/10.1016/j.enggeo.2018.01.014

    Article  Google Scholar 

  • Rezaei A, Mousavi Z (2019) Characterization of land deformation, hydraulic head, and aquifer properties of the Gorgan confined aquifer, Iran, from InSAR observations. J Hydrol 579:124196. https://doi.org/10.1016/j.jhydrol.2019.124196

    Article  Google Scholar 

  • Riley FS (1969) Analysis of borehole extensometer data from central California. Land Subsidence 2:423–431

    Google Scholar 

  • Riley FS (1984) Developments in borehole extensometry. In: Land subsidence. Proceedings of the Third International Symposium on Land Subsidence, Venice, Italy, pp 169-186

  • Smith RG, Knight R, Chen J, Reeves JA, Zebker HA, Farr T, Liu Z (2017) Estimating the inelastic loss of groundwater storage in the southern San Joaquin Valley, California. Water Resour Res 53(3):2133–2148

    Article  Google Scholar 

  • Theodossiou N, Latinopoulos P (2006) Evaluation and optimisation of groundwater observation networks using the Kriging methodology. Environ Model Softw 21(7):991–1000

    Article  Google Scholar 

  • Varouchakis ΕA, Hristopulos DT (2013) Comparison of stochastic and deterministic methods for mapping groundwater level spatial variability in sparsely monitored basins. Environ Monit Assess 185(1):1–19

    Article  Google Scholar 

  • Wang L, Chen C, Du J, Wang T (2017) Detecting seasonal and long-term vertical displacement in the North China plain using GRACE and GPS. Hydrol Earth Syst Sci 21:2905–2922

    Article  Google Scholar 

  • Zou R, Wang Q, Freymueller JT, Poutanen M, Cao X, Zhang C, Tang S, He P (2015) Seasonal hydrological loading in southern Tibet detected by joint analysis of GPS and GRACE. Sensors 15(12):30525–30538

    Article  Google Scholar 

Download references

Acknowledgements

We truly appreciate the Iran National Science Foundation, INSF (founding No. 96008728), for financial support. We also would like to express appreciation to the National Cartography Center of Iran, and the Golestan Regional Water Authority for providing the land level and well data, respectively. The dataset developed by the authors is available upon request from the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolfazl Rezaei.

Electronic supplementary material

ESM 1

(PDF 1177 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, A., Mousavi, Z., Khorrami, F. et al. Inelastic and elastic storage properties and daily hydraulic head estimates from continuous global positioning system (GPS) measurements in northern Iran. Hydrogeol J 28, 657–672 (2020). https://doi.org/10.1007/s10040-019-02092-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-019-02092-y

Keywords

Navigation