Skip to main content

Advertisement

Log in

Geomorphometric imprints of flank collapses on volcanic edifices: Implications from the case of Mount St. Helens

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Analyzing the geomorphometric traces of volcanic eruptions by comparing pre- and post-eruption maps and images of volcanic edifices can quantitatively indicate drastic changes in topography enlightening the effects of volcanic flank collapses. Volcanic edifices are inherently prone to experience flank collapses and related large landslides at some point of their evolution, which significantly change the volcanic landscape and totally destroy everything in their paths. If the flank collapses occurred on volcanic edifices in islands, they are also adequate to cause tsunamis with larger devastating effects. Thus, recognizing the imprints of flank collapses and their effects on volcanic edifices has critical importance. Comparison of pre- and post-eruption elevation, slope, aspect, and hypsometry analyses of the regular cone-shaped pre-eruption volcanic edifice as in the case of May 18, 1980 eruption of Mount St. Helens in Washington provides an excellent opportunity to understand the influence of such a rapid catastrophic event on landscape evolution. The volcanic flank collapse during the eruption particularly affected the upper 1500 m. The collapsed part increased the percentage of region between 1500 and 2150 m, particularly accumulated around ~ 1950 m, and created a plateau morphology because of landsliding and debris avalanche. The maximum and average maximum slope values of the edifice significantly increased in the upper part of this altitude due to flank collapse-related scar development. Post-eruption redistributions of slope values and aspect directions have also changed obviously, and represent the signatures of an amphitheater (horseshoe/C-) shaped scarp and plateau morphology developments particularly for the highest (40° <) and lowest (0–10°) slope ranges, respectively. On the other hand, the comparison of pre- and post-eruption hypsometries of the volcanic edifice represents an increase against the decreased relief of the volcanic edifice as a result of the flank collapse and landsliding, which created a large plateau on the northern sector, affected the elevation-area relation of the volcanic edifice in a different way. The results represent how such a destructive event can be a rejuvenating process on the topography as in the case of Mount St. Helens by increasing slope and hypsometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

All figures are modified from Moore and Albee (1981)

Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acocella V, Puglisi G (2010) Hazard mitigation of unstable volcanic edifices. EOS Trans Am Geophys Union 91(40):357–358

    Article  Google Scholar 

  • Alcalá-Reygosa J, Palacios D, Zamorano Orozco JJ (2016) Geomorphology of the Ampato volcanic complex (Southern Peru). J Maps 12(5):1160–1169

    Article  Google Scholar 

  • Belousov A, Voight B, Belousova M (2007) Directed blasts and blast-generated pyroclastic density currents: a comparison of the Bezymianny 1956, Mount St Helens 1980, and Soufrière Hills, Montserrat 1997 eruptions and deposits. Bull Volcanol 69(7):701–740

    Article  Google Scholar 

  • Bleacher JE, Greeley R (2008) Relating volcano morphometry to the developmental progression of Hawaiian shield volcanoes through slope and hypsometric analyses of SRTM data. J Geophys Res Solid Earth 113:B09208

    Article  Google Scholar 

  • Borgia A, Ferrari L, Pasquarè G (1992) Importance of gravitational spreading in the tectonic and volcanic evolution of Mount Etna. Nature 357(6375):231–235

    Article  Google Scholar 

  • Brugman MM, Post A (1981) Effects of volcanism on the glaciers of Mount St. Helens, Washington. USGS, Reston

    Google Scholar 

  • Camiz S, Poscolieri M, Roverato M (2017) Geomorphometric comparative analysis of Latin-American volcanoes. J S Am Earth Sci 76:47–62

    Article  Google Scholar 

  • Clynne MA, Ramsey DW, Wolfe EW, Hendley II JW, Stauffer PH (2005) Pre-1980 eruptive history of mount St. Helens, Washington. USGS Fact Sheet No. 2005-3045

  • Collins BD, Dunne T (1986) Erosion of tephra from the 1980 eruption of Mount St. Helens. Geol Soc Am Bull 97:896–905

    Article  Google Scholar 

  • Crandell DR (1987) Deposits of pre-1980 pyroclastic flows and lahars from Mount St. Helens volcano, Washington: US Geol. Surv. Prof. Pap, 1444

  • Crandell DR, Mullineaux DR (1978) Potential hazards from future eruptions of Mount St. Helens, Washington. USGS Bulletin 1383‐C

  • Crandell DR, Mullineaux DR, Meyer R (1975) Mount St. Helens Volcano: recent and future behavior. Science 187(4175):438–441

    Article  Google Scholar 

  • Delcamp A, Poppe S, Detienne M, Paguican EMR (2018) Destroying a volcanic Edifice—Interactions between edifice instabilities and the volcanic plumbing system. In: Burchardt S (ed) Volcanic and igneous plumbing systems. Elsevier, pp 231–257

    Chapter  Google Scholar 

  • Dirscherl M, Rossi C (2018) Geomorphometric analysis of the 2014–2015 Bárðarbunga volcanic eruption, Iceland. Remote Sens Environ 204:244–259

    Article  Google Scholar 

  • Donnadieu F, Merle O (1998) Experiments on the indentation process during cryptodome intrusions: new insights into Mount St. Helens deformation. Geology 26(1):79–82

    Article  Google Scholar 

  • Evans IS (1972) General geomorphometry, derivatives of altitude, and descriptive statistics. In: Chorley RJ (ed) Spatial analysis in geomorphology. Methuen, London, pp 17–90

    Google Scholar 

  • Evans IS (1980) An integrated system for terrain analysis for slope mapping. Z Geomorphol 36:274–295

    Google Scholar 

  • Favalli M, Fornaciai A (2017) Visualization and comparison of DEM-derived parameters. Application to Volcanic areas. Geomorphology 290:69–84

    Article  Google Scholar 

  • Gabrielli S, Spagnolo M, de Siena L (2020) Geomorphology and surface geology of Mount St. Helens volcano. J Maps 16(2):585–594

    Article  Google Scholar 

  • Glicken H (1986) Rockslide-debris avalanche of May 18, 1980, Mount St. Helens volcano, Washington. USGS Open file report, pp 96–677

  • Grosse P, van Wyk de Vries BW, Petrinovic IA, Euillades PA, Alvarado GE (2009) Morphometry and evolution of arc volcanoes. Geology 37(7):651–654

    Article  Google Scholar 

  • Grosse P, van Wyk de Vries B, Euillades PA, Kervyn M, Petrinovic IA (2012) Systematic morphometric characterization of volcanic edifices using digital elevation models. Geomorphology 136(1):114–131

    Article  Google Scholar 

  • Grosse P, Euillades PA, Euillades LD, van Wyk de Vries B (2014) A global database of composite volcano morphometry. Bull Volcanol 76(1):1–16

    Article  Google Scholar 

  • Guth PL (1995) Slope and aspect calculations on gridded digital elevation models: examples from a geomorphometric toolbox for personal computers. Z Geomorphol 101:31–52

    Google Scholar 

  • Guth PL (2009) Geomorphometry in Microdem. In: Hengl T, Reuter HI (eds) Geomorphometry: concepts, software, applications. Developments in Soil Science Series. Elsevier, New York, pp 351–366

    Google Scholar 

  • Harlin JM (1978) Statistical moments of the hypsometric curve and its density function. Math Geol 10(1):59–72

    Article  Google Scholar 

  • Hughes A, Kendrick JE, Salas G, Wallace PA, Legros F, Di Toro G, Lavallee Y (2020) Shear localisation, strain partitioning and frictional melting in a debris avalanche generated by volcanic flank collapse. J Struct Geol 140:104132

    Article  Google Scholar 

  • Hunt JE, Cassidy M, Talling PJ (2018) Multi-stage volcanic island flank collapses with coeval explosive caldera-forming eruptions. Sci Rep 8(1):1–11

    Article  Google Scholar 

  • Inbar M, Gilichinsky M, Melekestsev I, Melnikov D, Zaretskaya N (2011) Morphometric and morphological development of Holocene cinder cones: a field and remote sensing study in the Tolbachik volcanic field, Kamchatka. J Volcanol Geotherm Res 201(1–4):301–311

    Article  Google Scholar 

  • Janda RJ, Scott KM, Nolan KM, Martinson HA (1981) Lahar movement, effects, and deposition. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, Washington. USGS Prof. Paper, 1250, pp 461–478

  • Jordan R, Kieffer HH (1982) Topographic changes at Mount St. Helens: large-scale photogrammetry and digital terrain models. USGS Prof Paper 1250:135–142

    Google Scholar 

  • Karátson D, Favalli M, Tarquini S, Fornaciai A, Wörner G (2010) The regular shape of stratovolcanoes: a DEM-based morphometrical approach. J Volcanol Geotherm Res 193(3–4):171–181

    Article  Google Scholar 

  • Karlstrom L, Richardson PW, O’Hara D, Ebmeier SK (2018) Magmatic landscape construction. J Geophys Res Earth Surf 123(8):1710–1730

    Article  Google Scholar 

  • Lagmay AMF, van Wyk de Vries BW, Kerle N, Pyle DM (2000) Volcano instability induced by strike-slip faulting. Bull Volcanol 62(4–5):331–346

    Article  Google Scholar 

  • Lipman PW, Mullineaux DR (eds) (1981) The 1980 eruptions of Mount St. Helens, Washington. USGS Prof. Paper, 1250

  • Major JJ (2004) Posteruption suspended sediment transport at Mount St. Helens: decadal-scale relationships with landscape adjustments and river discharges. J Geophys Res Earth Surf 109:F01002

    Article  Google Scholar 

  • Major JJ, Pierson TC, Dinehart RL, Costa JE (2000) Sediment yield following severe volcanic disturbance—a two-decade perspective from Mount St. Helens. Geology 28(9):819–822

    Article  Google Scholar 

  • Mark RK, Moore JG (1987) Slopes of the Hawaiian ridge. USGS Prof Pap 1350:101–107

    Google Scholar 

  • Mayer L (1990) Introduction to quantitative geomorphology: an exercise manual. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • McGuire WJ (1996) Volcano instability: a review of contemporary themes. Geol Soc Lond Spec Publ 110(1):1–23

    Article  Google Scholar 

  • Meyer DF, Martinson HA (1989) Rates and processes of channel development and recovery following the 1980 eruption of Mount St. Helens, Washington. Hydrol Sci J 34:115–127

    Article  Google Scholar 

  • Mitchell SG, Montgomery DR (2006) Polygenetic topography of the Cascade Range, Washington State, USA. Am J Sci 306(9):736–768

    Article  Google Scholar 

  • Montaldo A, Vinciguerra S, Menza Z, Patane G (1996) Recent seismicity of Mount Etna: implications for flank instability. In: McGuire W, Jones A, Neuberg J (eds) Volcano instability on the earth and other planets. Geological Society of London, Special Publication, London, pp 169–177

    Google Scholar 

  • Moore JG, Albee WC (1981) Topographic and structural changes, March–July 1980: photogrammetric data. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, Washington. USGS Prof. Paper, 1250, pp 123–134

  • Mosbrucker AR (2014) High-resolution digital elevation model of Mount St. Helens crater and upper North Fork Toutle basin, Washington, based on an airborne lidar survey of September 2009, Data Series 904. Washington, DC: USGS. https://doi.org/10.3133/ds904

  • Mullineaux DR (1996) Pre-1980 tephra-fall deposits erupted from Mount St. Helens, Washington. USGS Prof Pap, 1563.

  • Newhall CG, Self S (1982) The Volcanic Explosivity Index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87(C2):1231–1238

    Article  Google Scholar 

  • Paguican EM (2012) The structure, morphology, and surface texture of debris avalanche deposits: field and remote sensing mapping and analogue modelling (Doctoral dissertation, Université Blaise Pascal-Clermont-Ferrand II)

  • Pedersen GBM, Grosse P (2014) Morphometry of subaerial shield volcanoes and glaciovolcanoes from Reykjanes Peninsula, Iceland: effects of eruption environment. J Volcanol Geotherm Res 282:115–133

    Article  Google Scholar 

  • Pelletier JD, Cline ML (2007) Nonlinear slope-dependent sediment transport in cinder cone evolution. Geology 35(12):1067–1070

    Article  Google Scholar 

  • Pike RJ (2000) Geomorphometry-diversity in quantitative surface analysis. Prog Phys Geogr 24(1):1–20

    Google Scholar 

  • Ramalho RS, Brum da Silveira A, Fonseca PE, Madeira J, Cosca M, Cachão M, Fonseca MM, Prada SN (2015) The emergence of volcanic oceanic islands on a slow-moving plate: the example of Madeira Island, NE Atlantic. Geochem Geophys Geosyst 16(2):522–537

    Article  Google Scholar 

  • Reid ME, Sisson TW, Brien DL (2001) Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier, Washington. Geology 29(9):779–782

    Article  Google Scholar 

  • Rosenfeld C (1980) Observations of the Mount St. Helens eruption. Am Sci 68(5):494–509

    Google Scholar 

  • Rosenfeld CL (1996) Monitoring of geomorphic effects of the 1980 eruptions of Mount St. Helens, Washington, USA. GeoJournal 38(3):321–328

    Article  Google Scholar 

  • Rowland SK, Garbeil H (2000) Slopes of oceanic basalt volcanoes. Geophys Monogr Am Geophys Union 116:223–248

    Google Scholar 

  • Sánchez-Guillamón O, Fernández-Salas LM, Vázquez JT, Palomino D, Medialdea T, López-González N, Somoza L, León R (2018) Shape and size complexity of deep seafloor mounds on the Canary Basin (west to Canary Islands, Eastern Atlantic): a DEM-based geomorphometric analysis of domes and volcanoes. Geosciences 8(2):37

    Article  Google Scholar 

  • Sherrod DR, Scott WE, Stauffer PH (eds) (2008) A volcano rekindled: the renewed eruption of Mount St. Helens, 2004–2006. USGS No. 1750

  • Shevchenko AV, Dvigalo VN, Walter TR, Mania R, Maccaferri F, Svirid IY, Belousov AB, Belousova MG (2020) The rebirth and evolution of Bezymianny volcano, Kamchatka after the 1956 sector collapse. Commun Earth Environ 1(1):1–15

    Article  Google Scholar 

  • Siebert L, Simkin T, Kimberly P (2010) Volcanoes of the World, 3rd edn. University of California Press. ISBN 978-0-520-26877-7

  • Strahler AN (1952) Hypsometric (area-altitude) analysis of erosional topography. Geol Soc Am Bull 63(11):1117–1142

    Article  Google Scholar 

  • Strahler AN (1958) Dimensional analysis applied to fluvially eroded landforms. Geol Soc Am Bull 69(3):279–300

    Article  Google Scholar 

  • Swanson FJ, Crisafulli CM, Yamaguchi DK (2005) Geological and ecological settings of Mount St. Helens before May 18, 1980. In: Dale VH, Swanson FJ, Crisafulli CM (eds) Ecological responses to the 1980 eruption of Mount St. Helens. Springer, New York, pp 13–26

    Google Scholar 

  • Tibaldi A (2001) Multiple sector collapses at stromboli volcano, Italy: how they work. Bull Volcanol 63(2–3):112–125

    Article  Google Scholar 

  • Tilling RI, Topoinka L, Swanson DA (1993) Eruptions of Mount St. Helens: Past, present, and future, version 1.01: USGS Special Interest Publication

  • Vallance JW, Siebert L, Rose WI Jr, Girón JR, Banks NG (1995) Edifice collapse and related hazards in Guatemala. J Volcanol Geotherm Res 66(1–4):337–355

    Article  Google Scholar 

  • van Wyk de Vries B, Francis PW (1997) Catastrophic collapse at stratovolcanoes induced by gradual volcano spreading. Nature 387(6631):387–390

    Article  Google Scholar 

  • van Wyk de Vries B, Kerle N, Petlry D (2000) Sector collapse forming at Casita volcano, Nicaragua. Geology 28:167–170

    Article  Google Scholar 

  • Vidal N, Merle O (2000) Reactivation of basement faults beneath volcanoes: a new model of flank collapse. J Volcanol Geotherm Res 99(1):9–26

    Article  Google Scholar 

  • Voight B (1996) The management of volcano emergencies: Nevado del Ruiz. In: Scarpa R, Tilling RI (eds) Monitoring and mitigation of volcano hazards. Springer, Berlin, pp 719–769

    Chapter  Google Scholar 

  • Voight B (2000) Structural stability of andesite volcanoes and lava domes. Philos Trans R Soc Lond 358:1663–1703

    Article  Google Scholar 

  • Voight B, Elsworth D (1997) Failure of volcano slopes. Geotechnique 47:1–31

    Article  Google Scholar 

  • Voight B, Glicken H, Janda RJ, Douglas PM (1981) Catastrophic rockslide avalanche of May 18. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, Washington, vol 125. USGS Prof. Papers, pp 347–377

  • Voight B, Janda R, Glicken H (1983) Nature and mechanics of the Mount St. Helens rockslide-avalanche of the 18 May 1980. Geotechnique 33:243–273

    Article  Google Scholar 

  • Walder JS, Schilling SP, Vallance JW, LaHusen RG (2008) Effects of lava-dome growth on the crater glacier of Mount St. Helens, Washington. In: Sherrod DR, Scott WE, Stauffer PH (eds) A Volcano Rekindled Renewed Erupt Mt St Helens, vol 2004–2006, pp 257–276. https://doi.org/10.3133/pp1750

  • Walder JS, Schilling SP, Sherrod DR, Vallance JW (2010) Evolution of Crater Glacier, Mount St. Helens, Washington, September 2006—November 2009. USGS Open-File Report 2010-1141

  • Weissel JK, Pratson LF, Malinverno A (1994) The length-scaling properties of topography. J Geophys Res Solid Earth 99(B7):13997–14012

    Article  Google Scholar 

  • Willgoose G, Hancock G (1998) Revisiting the hypsometric curve as an indicator of form and process in transport-limited catchment. Earth Surf Process Landf J Br Geomorphol Group 23(7):611–623

    Article  Google Scholar 

  • Wilson JP, Gallant JC (eds) (2000) Terrain analysis: principles and applications. Wiley, New York

    Google Scholar 

  • Yamaguchi DK, Hoblitt RP (1995) Tree-ring dating of pre-1980 volcanic flowage deposits at Mount St. Helens, Washington. Geol Soc Am Bull 107(9):1077–1093

    Article  Google Scholar 

  • Zernack AV, Procter JN (2021) Cyclic growth and destruction of volcanoes. In: Roverato M, Dufresne A, Procter J (eds) Volcanic debris avalanches. Springer, Cham, pp 311–355

    Chapter  Google Scholar 

Download references

Acknowledgements

The author is grateful to Paul W. Richardson for fruitful discussions on an early draft of the manuscript, Aytekin Erten for his contribution to digitization of the pre-eruption topographic map, and two anonymous reviewers for their constructive criticisms that improved the manuscript.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

The author made the research, analyze the data and write the paper.

Corresponding author

Correspondence to Alper Gürbüz.

Ethics declarations

Conflict of interest

No conflict of interests.

Availability of data and material

Data and material are available from the author on request.

Code availability

No code used.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gürbüz, A. Geomorphometric imprints of flank collapses on volcanic edifices: Implications from the case of Mount St. Helens. Environ Earth Sci 81, 129 (2022). https://doi.org/10.1007/s12665-022-10231-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-022-10231-0

Keywords

Navigation