Skip to main content

Advertisement

Log in

Shallow seismic characteristics and distribution of gas in lacustrine sediments at Lake Erçek, Eastern Anatolia, Turkey, from high-resolution seismic data

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The high-resolution analysis of single-channel, seismic reflection data from Lake Erçek (Eastern Anatolia) revealed a wide range of shallow gas anomalies consisting of enhanced reflections, seismic chimneys, acoustic blanking/acoustic turbidity, strong reflectors, and pockmarks, including both surface and buried pockmarks. The enhanced reflections are represented by the higher amplitude reflection patterns resulting from high acoustic impedance variations. They are mostly clustered in the NW-corner of the lake. Seismic chimneys are represented by vertical and thinned columnar disturbances of amplitude blanking and mostly occurred in deep basinal and faulted sections in the West and East of the lake. Some seismic chimneys, occurring together with pockmarks, represent vertical vent activations. Acoustic gas masking was represented by chaotic and diffuse seismic reflection patterns, including acoustic blanking and acoustic turbidity. As diffuse acoustic turbidity indicates gas-charged sediments, columnar disturbances showing acoustic blanking indicate degassing of the sediments. These features extend from SE to NW, coinciding with the deep basin morphology of the lake. A very local strong reflector was identified in the W-section of the lake, simulating the lake floor. This reflector is due to extended enhanced reflections, suggesting shallow free gas. Pockmarks observed in the lake are structurally classified into the two distinct types; surface (active) pockmarks found in the SE-part of the lake and buried (passive) pockmarks found in the NW. The former enlarge through deeper gas reservoir feedback, as the layering is impermeable, while the latter have resulted from a cessation of the reservoir feedback mechanism and/or permeable layering. In the lake, shallow gas distribution is controlled by faults, that provide the faulting-driven depositional control and earthquakes, that provide the seismicity-driven overpressure control. The shallow gas is then vertically–horizontally distributed and shaped by asymmetric depositional–stratigraphic factors. This study of Lake Erçek presents complementary information about a possible tectono-thermal origin of observed shallow gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

modified from Toker and Tur 2018). Inset map shows Lakes Van (blue) and Erçek (red) regions

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

modified from Toker and Tur 2018), including lacustrine shelf (Ls), sub-lacustrine slope (SLs), and deep basin (DB). The basinal pattern of gas anomalies correlates well with the water depth ≥ 25 m (DB) (see text for abbreviations). Surface pockmarks are only observed in the SE-part of the basin, where seismic chimneys are also seen and buried pockmarks detected are diffused in a few locations toward the NW. Seismic chimneys are densely observable in most of the surveyed area from SE (surface pockmark area) to NW (enhanced reflection area) and several seismic chimneys (triangles in orange) are diffusely isolated in a few locations toward the NW. Enhanced reflections dominantly clustered in the NW-corner of the basin are associated with the strong reflector, only identified in the W-end of the basin, where some chimneys and buried pockmark are also evident. Gas-charged sediments (GCS) associated with acoustic gas masking are distributed along-strike in an SE-to-NW pattern

Fig. 12

modified from Toker and Tur 2018), superimposed on the distributional patterns of the shallow gas shown in Fig. 11 and the lake bathymetry shown in Fig. 1b. Note the fault-controlled distributional patterns of the shallow gas, compatible with bathymetry

Similar content being viewed by others

References

  • Abegg F, Anderson AL (1997) The acoustic turbid layer in muddy sediments of Eckernfoerde Bay, Western Baltic: methane concentration, saturation and bubble characteristics. Mar Geol 137:137–147

    Article  Google Scholar 

  • Akkaya İ (2020) Availability of Seismic Vulnerability Index (Kg) in the Assessment of Building Damage in Van. Eastern Turkey, Earthquake Engineering and Engineering Vibration 19(1):189–204

    Article  Google Scholar 

  • Altınok Y, Alpar B (2006) Marmara Island earthquakes, of 1265 and 1935; Turkey. Nat Hazards Earth Syst Sci 6(6):999–1006. https://doi.org/10.5194/nhess-6-999-2006

    Article  Google Scholar 

  • Anderson AL, Bryant WR (1990) Gassy sediment occurrence and properties: Northern Gulf of Mexico. Geo-Mar Lett 10:209–220

    Article  Google Scholar 

  • Anderson AL, Hampton LD (1980) Acoustics of gas-bearing sediments II. J Acoustical Soc Am 67(6):1880–1903

    Google Scholar 

  • Anderson AL, Abegg F, Hawkins JA, Duncan ME, Lyons AP (1998) Bubble populations and acoustic interaction with the gassy floor of Eckernförde Bay. Cont Shelf Res 18(14–15):1807–1838

    Article  Google Scholar 

  • Anka Z, Loegering MJ, di Primio R, Marchal D, Rodríguez JF, Vallejo E (2014) Distribution and origin of natural gas leakage in the Colorado Basin, offshore argentina Margin, South America: seismic interpretation and 3D basin modelling. Geol Acta 12(4):269–285

    Google Scholar 

  • Artemieva I, Shulgin A (2019) Geodynamics of Anatolia: lithosphere thermal structure and thickness. Tectonics 38:1–23. https://doi.org/10.1029/2019TC005594

    Article  Google Scholar 

  • Baltzer A, Tessier B, Nouze H, Bates R, Moore C, Menier D (2005) Seistec seismic profiles: a tool to differentiate gas signatures. Marine Geophys Res 26:235–245

    Article  Google Scholar 

  • Baraza J, Ercilla G (1996) Gas-charged sediments and large pockmark-like features on the Gulf of Cadiz slope (SW Spain). Mar Petrol Geol 13:253–261

    Article  Google Scholar 

  • Berndt C, Bünz S, Mienert J (2003) Polygonal fault systems on the mid-Norwegian margin: a long term source for fluid flow. In: Van Rensbergen P, Hillis R, Maltman A, Morley C (eds) Subsurface sediment mobilization: geological society special publication, 216. Geological Society of London, pp 283–290

    Google Scholar 

  • Bertin X, Chaumillon E (2005) New insights in shallow gas generation from very high resolution seismic and bathymetric surveys in the Marennes-Oléron Bay, France. Mar Geophys Res 26:225–233

    Article  Google Scholar 

  • Best AI, Tuffin MDJ, Dix JK, Bull JM (2004) Tidal height and frequency dependence of acoustic velocity and attenuation in shallow gassy marine sediments. J Geophys Res 109(B8):B08101. https://doi.org/10.1029/2003JB002748

    Article  Google Scholar 

  • Best AI, Richardson MD, Boudreau BP et al (2006) Shallow seabed methane gas could pose coastal hazard. Eos 87(22):213–215

    Article  Google Scholar 

  • Boudreau BP, Algar C, Johnson BD et al (2005) Bubble growth andrise in soft sediments. Geology 33(6):517–520. https://doi.org/10.1130/G21259.1

    Article  Google Scholar 

  • Chun JH, Ryu B-J, Lee CS, Kim YJ, Choi JY, Kang NK, Bahk JJ, Kim JH, Kim KJ, Yoo DG (2012) Factors determining the spatial distribution of gas-charged sediments in the continental shelf off southeastern Korea. Mar Geol 332–334:27–39. https://doi.org/10.1016/j.margeo.2012.06.004

    Article  Google Scholar 

  • Çifçi G, Dondurur D (2003) Deep and shallow structures of large pockmarks in the Turkish shelf Eastern Black Sea. Geo-Mar Lett 23:311–322. https://doi.org/10.1007/s00367-003-0138-x

    Article  Google Scholar 

  • Clayton CJ, Hay SJ (1994) Gas migration mechanisms from accumulation to surface. Bull Geol Soc Den 41:12–23

    Google Scholar 

  • Cole D, Stewart SA, Cartwright JA (2000) Giant irregular pockmark craters in the palaeogene of the outer moray firth Basin, UK North Sea. Mar Petrol Geol 17:563–577

    Article  Google Scholar 

  • Croker PF, Kozachenko M, Wheeler AJ (2005). Gas-related seabed structures in the Western Irish Sea (IRL-SEA6). Tech Rep Strategic Environ Assess SEA6.

  • Çukur D, Krastel S, Schmincke HU, Sumita M, Tomonaga Y, Çagatay MN (2014) Water level changes in Lake Van, Turkey, during the past ca. 600 ka: climatic, volcanic and tectonic controls. J Paleolimnol 52:201–214. https://doi.org/10.1007/s10933-014-9788-0

    Article  Google Scholar 

  • Çukur, D., Krastel, S., Schlüter, F.D., Demirbag, E., Imren, C., Niessen, F., Toker, M., PaleoVan-Working Group (2013a) Sedimentary evolution of Lake Van (Eastern Turkey) reconstructed from high resolution seismic investigations. Int J Earth Sci 102(2):571–585. https://doi.org/10.1007/s00531-012-0816-x

    Article  Google Scholar 

  • Çukur, D., Krastel, S., Tomonaga, Y., Çagatay, M.N., Meydan, A.F., and the PaleoVan Science Team (2013b) Seismic evidence of shallow gas from Lake Van, eastern Turkey. Mar and Pet Geo 48:341–353. https://doi.org/10.1016/j.marpetgeo.2013.08.017

    Article  Google Scholar 

  • Curzi PV, Veggiani A (1985) I pockmarks nel mare Adriatico centrale. Acta Nat Ateneo Parmense 21:9–90

    Google Scholar 

  • Davis AM (1992) Shallow gas: an overview. Cont Shelf Res 12:1077–1079

    Article  Google Scholar 

  • Davy B (1992) Seismic reflection profiling on southern Lake Rotorua–evidence for gas-charged lake floor sediments. Geothermics 21:97–108

    Article  Google Scholar 

  • Delph JR, Zandt G, Beck SL (2015) A new approach to obtaining a 3D shear wave velocity model of the crust and upper mantle: an application to eastern Turkey. Tectonophysics. https://doi.org/10.1016/j.tecto.2015.09.031

    Article  Google Scholar 

  • Dicle S, Üner S (2017) New active faults on Eurasian-Arabian collision zone: tectonic activity of Özyurt and Gülsünler faults (eastern Anatolian Plateau, Van-Turkey). Geol Acta 15(2):107–120. https://doi.org/10.1344/GeologicaActa2017.15.2.3

    Article  Google Scholar 

  • Domżalski J, Górecki W, Mazurek A, Myśko A, Strzetelski W, Szamałek K (2004) The prospects for petroleum exploration in the eastern sector of Southern Baltic as revealed by sea bottom geochemical survey correlated with seismic data. Przegląd Geologiczny 52(8/2):792–799

    Google Scholar 

  • Duarte H, Pinheiro LM, Teixeira FC, Monteiro JH (2007) High-resolution seismic imaging of gas accumulations and seepage in the sediments of the Ria de Aveiro barrier lagoon (Portugal). Geo-Mar Lett 27:115–126

    Article  Google Scholar 

  • Emeis KC, Bruchert V, Currie B, Endler R, Ferdelman T, Kiessling A, Leipe T, Noli-Peard K, Struck U, Vogt T (2004) Shallow gas in shelf sediments of the Namibian coastal upwelling ecosystem. Cont Shelf Res 24(6):627–642. https://doi.org/10.1016/j.csr.2004.01.007

    Article  Google Scholar 

  • Emery KO, Hoggan D (1958) Gases in marine sediments. AAPG Bull 42:2174–2188

    Google Scholar 

  • Fleischer P, Orsi TH, Richardson MD, Anderson AL (2001) Distribution of free gas in marine sediments: a global overview. Geo-Mar Lett 21(2):103–122. https://doi.org/10.1007/s003670100072

    Article  Google Scholar 

  • Fleischer P, Orsi TH, Richardson MD, Anderson AL (2001) Distribution of free gas in marine sediments: a global overview. Geo-Mar Lett 21:103–122

    Article  Google Scholar 

  • Garcia-Gil S, Vilas F, Garcia-Garcia A (2002) Shallow gas features in incised-valley fills (Ria de Vigo, NW Spain): a case study. Cont Shelf Res 22:2303–2315

    Article  Google Scholar 

  • Gay A, Lopez M, Berndt C, Séranne M (2007) Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin. Mar Geol 244:68–92

    Article  Google Scholar 

  • Hage S, Hubert-Ferrari A, Lamair L, Avşar U, El Ouahabi M, Van Daele M et al (2017) Flow dynamics at the origin of thin clayey sand lacustrine turbidites: examples from Lake Hazar. Turkey Sedimentol 64(7):1929–1956

    Article  Google Scholar 

  • Hartwig A, Anka Z, di Primio R (2012) Evidence of a widespread paleo-pockmarked field in the Orange Basin: An indication of an early Eocene massive fluid escape event off-shore South Africa. Mar Geol 332–334:222–234

    Article  Google Scholar 

  • Hovland M (1981a) A classification of pockmarks related features in the Norwegian Trench. Continental Shelf Institute (IKU), p 28

    Google Scholar 

  • Hovland M (1981b) Characteristics of pockmarks in the Norwegian Trench. Mar Geol 39:103–117

    Article  Google Scholar 

  • Hovland M (1982) Pockmarks and the recent geology of the central section of the Norwegian Trench. Mar Geol 47:283–301

    Article  Google Scholar 

  • Hovland M (1984) Gas-induced erosion features in the North Sea. Earth Surf Proc Landforms 9:209–228

    Article  Google Scholar 

  • Hovland M (1989) The formation of pockmarks and their potential influence on offshore construction. Quart J Eng Geol 22:131–138

    Article  Google Scholar 

  • Hovland M (1992) The effects of shallow gas in the skagerrak surficial sediments. Geol Föreningens Stockholm Förhandlingar 114:235–251

    Google Scholar 

  • Hovland M (2008) Deep-water coral reefs: unique biodiversity hotspots. Praxis Publishing (Springer), p 278

    Google Scholar 

  • Hovland M, Judd AG (1988) Seabed pockmarks and seepages. Impact on geology, biology and the marine environment. Graham & Trotman Ltd, p 293

    Google Scholar 

  • Hovland M, Judd AG, Burke RA Jr (1993) The global flux of methane from shallow submarine sediments. Chemosphere 26(1–4):559–578. https://doi.org/10.1016/0045-6535(93)90442-8

    Article  Google Scholar 

  • Hustoft S, Bünz S, Mienert J (2010) Three-dimensional seismic analysis of the morphology and spatial distribution of chimneys beneath the Nyegga pockmark field, offshore mid-Norway. Basin Res 22:465–480. https://doi.org/10.1111/j.1365-2117.2010.00486.x

    Article  Google Scholar 

  • Jackson DR, Richardson M (2007) High-frequency seafloor acoustics. Springer-Verlag

    Book  Google Scholar 

  • Jakobsson M, Bjorck S, O’Regan M, Floden T, Greenwood SL, Sward H et al (2014) Major earthquake at the Pleistocene-Holocene transition in Lake Vattern, southern Sweden. Geology 42(5):379–382

    Article  Google Scholar 

  • Jaśniewicz D, Klusek Z, Brodecka-Goluch A, Bolałek J (2019) Acoustic investigations of shallow gas in the southern Baltic Sea (Polish Exclusive Economic Zone): a review. Geo-Mar Lett 2019(39):1–17. https://doi.org/10.1007/s00367-018-0555-5

    Article  Google Scholar 

  • Jobe ZR, Lowe DR (2009) Pockmarks on the modern seafloor as indicators of submarine Canyon abandonment, offshore equatorial. In: AAPG Search and Discovery Article, Pacific Section Meeting, Ventura, California.

  • Judd AG, Hovland M (1992) The evidence of shallow gas in marine sediments. Cont Shelf Res 12(10):1081–1096. https://doi.org/10.1016/0278-4343(92)90070-Z

    Article  Google Scholar 

  • Judd AG, Hovland M (2007) Seabed fluid flow, the impact on geology biology and marine environment. Cambridge University Press, p 475

    Book  Google Scholar 

  • Judd AG, Hovland M, Dimitrov LI, Garcia-Gill S, Jukes V (2002) The geological methane budget at continental margins and its influence on climate change. Geofluids 2:109–126

    Article  Google Scholar 

  • Judd AG, Curzi PV (2002) The rising influence of shallow gas: an introduction to the bologna conference on ‘Gas in Marine Sediments’. Cont. Shelf Res. 22: 2267–2271.

  • Kaden H, Peeters F, Lorke A, Kipfer R, Tomonaga Y, Karabiyikoglu M (2010) Impact of lake level change on deep-water renewal and oxic conditions in deep saline Lake Van. Turkey Water Resour Res 46:W11508

    Google Scholar 

  • Kamar G (2021) Holocene palynology and pollen-based palaeoclimate reconstruction of Lake Erçek (Eastern Anatolia); short-term climatic fluctuations and their relation with global palaeoclimatic change; results of cores E1 and E10. Geol Bull Turkey 64:253–266. https://doi.org/10.25288/tjb.927117

    Article  Google Scholar 

  • Kelley JT, Dickson SM, Belknap DF, Barnhardt WA, Henderson M (1994) Giant sea-bed pockmarks: evidence for gas escape from Belfast Bay. Mar Geol 22:59–62

    Article  Google Scholar 

  • King LH, MacLean B (1970) Pockmarks on the Scotian Shelf. Geol Soc Am Bull 81:3141–3148

    Article  Google Scholar 

  • Kipfer R, Aeschbach-Hertig W, Baur H, Hofer M, Imboden DM, Signer P (1994) Injection of mantle type helium into Lake Van (Turkey): the clue for quantifying deep water renewal. Earth Planet Sci Lett 125:357–370

    Article  Google Scholar 

  • Koyama T (1953) Measurement and analysis of gases in lake muds. J Earth Sci (nagoya University) 1:107–118

    Google Scholar 

  • Kuhlmann G, Adams S, Campher C, Van Der Spuy D, di Primio R, Horsfield B (2010) Passive margin evolution and its controls on natural gas leakage in the southern Orange Basin, blocks 3/4, offshore South Africa. Mar Pet Geol 27:973–992

    Article  Google Scholar 

  • Kurtman F, Akkus MF, Gedik A (1978) The geology and oil potential of Mus-Van region. In: Degens ET, Kurtman F (eds) Geology of Lake Van, 169. M.T.A. Press, pp 124–133

    Google Scholar 

  • Kwiecien O, Stockhecke M, Pickarski N, Heumann G, Litt T, Sturm M, Anselmetti F, Kipfer R, Haug GH (2014) Dynamics of the last four glacial terminations recorded in Lake Van. Turkey, Quat Sci Rev 104:42–52. https://doi.org/10.1016/j.quascirev.2014.07.001

    Article  Google Scholar 

  • Laier T, Jensen JB (2007) Shallow gas depth-contour map of the Skagerrak, western Baltic Sea region. Geo-Mar Lett 27:127–141

    Article  Google Scholar 

  • Lee GH, Kim DC, Ki HJ, Jou HT, Lee YJ (2005) Shallow gas in the central part of the Korea Strait shelf mud off the southeastern coast of Korea. Cont Shelf Res 25:2036–2052

    Article  Google Scholar 

  • Leroy SA, Schwab MJ, Costa PJ (2010) Seismic influence on the last 1500-year infill history of Lake Sapanca (North Anatolian Fault, NW Turkey). Tectonophysics 486(1–4):15–27

    Article  Google Scholar 

  • Litt T, Krastel S, Sturm M, Kipfer R, Orcen S, Heumann G, Franz SO, Ulgen UB, Niessen F (2009) PALEOVAN, international continental scientific drilling program (ICDP): site survey results and perspectives. Quat Sci Rev 28(15–16):1555–1567

    Article  Google Scholar 

  • Litt T, Pickarski N, Heumann G, Stockhecke M, Tzedakis PC (2014) A 600,000-year long continental pollen record from Lake Van, eastern Anatolia (Turkey). Quatern Sci Rev. https://doi.org/10.1016/j.quascirev.2014.03.017

    Article  Google Scholar 

  • Litt T, Anselmetti FS, Cagatay MN, Kipfer R, Krastel S, Schmincke HU, Paleo Van Working Team (2011) A 500,000 year-long sedimentary archive drilled in Eastern Anatolia (Turkey), The Paleo Van Drilling Project. EOS, 453–164.

  • Lodolo E, Baradello L, Darbo A, Caffau M, Tassone A, Lippai H, Lodolo A, De Zorzi G, Grossi M (2012) Occurrence of shallow gas in the easternmost Lago Fagnano (Tierra del Fuego). Near Surf Geophys 10:161–169. https://doi.org/10.3997/1873-0604.2011040

    Article  Google Scholar 

  • Lowe JJ, Walker MJC (1997) Reconstructing quaternary environments. Longman Publ, p 446

    Google Scholar 

  • Mahatsente R, Önal G, Çemen I (2018) Lithospheric structure and the isostatic state of Eastern Anatolia: insight from gravity data modelling. Lithosphere 10:279–290

    Article  Google Scholar 

  • Mathys M, Thiessen O, Theilen F, Schmidt M (2005) Seismic characterization of gas-rich near surface sediments in the Arkona Basin, Baltic Sea. Marine Geophys Res 26:207–224

    Article  Google Scholar 

  • Mazumdar A, Peketi A, Dewangan P, Badesab F, Ramprasad T, Ramana MV, Patil DJ, Dayal A (2009) Shallow gas charged sediments off the Indian west coast: Genesis and distribution. Mar Geol 267(1–2):71–85. https://doi.org/10.1016/j.margeo.2009.09.005

    Article  Google Scholar 

  • Missiaen T, Murphy S, Loncke L, Henriet J-P (2002) Very high-resolution seismic mapping of shallow gas in the Belgian coastal zone. Cont Shelf Res 22:2291–2301

    Article  Google Scholar 

  • Naudts L, De Batist M, Greinert J, Artemov Y (2009) Geo- and hydro-acoustic manifestations of shallow gas and gas seeps in the Dnepr paleo-delta, northwestern Black Sea. Lead Edge 28:1030–1040

    Article  Google Scholar 

  • Nelson H, Tor DR, Sandstrom MW, Kvenvolden KA (1979) Modern biogenic gas-related craters (sea-floor _pockmarks_) on the Bering Shelf, Alaska. Geol Soc Am Bull 90:1144–1152

    Article  Google Scholar 

  • Orange D, Garcia-Garcia A, Lorenson T, Nittrouer C, Milligan T, Miserocchi S et al (2005) Shallow gas and flood deposition on the Po Delta. Mar Geol 222–223:159–177

    Article  Google Scholar 

  • Ostanin I, Anka Z, di Primio R, Bernal A (2012) Identification of a large upper cretaceous polygonal fault network in the hammerfest basin: implications on the reactivation of regional faults and gas leakage dynamics, SW Barents Sea. Mar Geol 332–334:109–125. https://doi.org/10.1016/j.margeo.2012.03.005

    Article  Google Scholar 

  • Pickrill RA (1993) Shallow seismic stratigraphy and pockmarks of a hydrothermally influenced lake, Lake Rotoiti, New Zealand. Sedimentology 40:813–828

    Article  Google Scholar 

  • Pig-Pib (2008) Petrobaltic Kronos Geos Geosfera (consortium). Strefy perspektywnczne dla występowania złóż węglowodorów (in Polish). In: Anolik P, Karczewska A, (eds) Badania geochemiczne południowego Bałtyku pod kątem analizy skażeń geogenicznych I poszukiwań naftowych (in Polish). Polish Geological Institute, Warsaw part II.

  • Pilcher R, Argent J (2007) Mega-pockmarks and linear pockmark trains on the West African continental margin. Mar Geol 244:15–32

    Article  Google Scholar 

  • Prior DB, Coleman JB (1984) Submarine slope instability. In: Brunsden D, Prior DB (eds) Slope instability. Wiley, pp 419–455

    Google Scholar 

  • Randlett M-E, Bechtel A, van der Meer MTJ, Peterse F, Litt T, Pickarski N, Kwiecien O, Stockhecke M, Wehrli B, Schubert CJ (2017) Biomarkers in Lake Van sediments reveal dry conditions in eastern Anatolia during 110.000–10.000 years B.P. Geochem Geophys Geosyst 18:571–583. https://doi.org/10.1002/2016GC006621

    Article  Google Scholar 

  • Sammartini, M., Moernaut, J., Anselmetti, F.S., Hilbe, M., Lindhorst, K., Praet, N., and Strasser, M (2020) An Atlas of Mass‐Transport Deposits in Lakes in Submarine Landslides: Subaqueous Mass Transport Deposits from Outcrops to Seismic Profiles, Geophysical Monograph 246. In: Kei O, Andrea F, Gian AP (2020) American Geophysical Union. John Wiley & Sons, Inc.

  • Schroot BM, Schuttenhelm RTE (2003) Expressions of shallow gas in the Netherlands North Sea. Neth J Geosci 82:91–105

    Google Scholar 

  • Schubel JR (1974) Gas bubbles and the acoustically impenetrable, or turbid, character of some estuarine sediments. In: Kaplan IR (ed) Natural Gases in Marine Sediments. Plenum Press, pp 275–298

    Chapter  Google Scholar 

  • Schüler F (1952) Untersuchungen uber die Machtigkeiten von Schlickschichten mit Hilfe des Echographen (In Deutsch). Deutsche Hydrographische Zeitschrift 5:220–231

    Article  Google Scholar 

  • Shiki T, Kumon F, Inouchi Y, Kontani Y, Sakamoto T, Tateishi M et al (2000) Sedimentary features of the seismo-turbidites, Lake Biwa. Japn Sediment Geol 135(1–4):37–50

    Article  Google Scholar 

  • Solheim A, Elverhoi A (1993) Gas-related sea floor craters in the Barents Sea. Geo-Mar Lett 13:235–243

    Article  Google Scholar 

  • Solovyeva MA, Starovoytov AV, Akhmanov GG, Khlystov OM, Khabuev AV, Tokarev MY, Chensky DA (2016) The evolution of slump-induced destruction of Kukuy Griva slope (Lake Baikal) revealed on the base of the data of seismic and acoustic surveys. Mosc Univ Geol Bull 71(6):416–428

    Article  Google Scholar 

  • Stockhecke M, Kwiecien O, Vigliotti L, Anselmetti FS, Beer J, Cagatay MN, Channell JET, Kipfer R, Lachner J, Litt T, Pickarski N, Sturm M (2014a) Chronostratigraphy of the 600,000 year old continental record of Lake Van (Turkey). Quat Sci Rev. https://doi.org/10.1016/j.quascirev.2014.04.008

    Article  Google Scholar 

  • Stockhecke M, Sturm M, Brunner I, Schmincke HU, Sumita M, Kipfer R, Cukur D, Kwiecien O, Anselmetti FS (2014b) Sedimentary evolution and environmental history of Lake Van (Turkey) over the past 600,000 years. Sedimentology. https://doi.org/10.1111/sed.12118

    Article  Google Scholar 

  • Taylor DI (1992) Near shore shallow gas around the U.K. coast. Cont Shelf Res 12:1135–1144

    Article  Google Scholar 

  • Toker M (2013) Time-dependent analysis of aftershock events and structural impacts on intraplate crustal seismicity of the Van earthquake (Mw 71, 23 October 2011) E-Anatolia. Cent Eur J Geosci 5(3):423–434

    Google Scholar 

  • Toker M (2014) Discrete characteristics of the aftershock sequence of the 2011 Van earthquake. J Asian Earth Sci 92:168–186. https://doi.org/10.1016/j.jseaes.2014.06.015

    Article  Google Scholar 

  • Toker M (2017) The b value analysis of aftershocks 170 days after the 23 October 2011 Van earthquake (Mw, 71) of the Lake Van basin, Eastern Anatolia: a new perspective on the seismic radiation and deformation characteristics. In: Zouaghi T (ed) Earthquakes tectonics. Hazard and Risk Mitigation

    Google Scholar 

  • Toker M, Şahin Ş (2019) Crustal Poisson’s ratio tomography and velocity modeling across tectono-magmatic lake regions of Eastern Anatolia (Turkey): new geophysical constraints for crustal tectonics. J Geodyn 131(101651):1–28

    Google Scholar 

  • Toker M, Şengör AMC (2011) Van Gölü havzasının temel yapısal unsurları, tektonik ve sedimanter evrimi, Doğu Türkiye (Structural elements of Lake Van basin, its tectonic and sedimentary evolution, Eastern Turkey). ITU J Ser D: Eng 10:119–130

    Google Scholar 

  • Toker M, Tur H (2018) Structural patterns of the Lake Erçek Basin, eastern Anatolia (Turkey): evidence from single-channel seismic interpretation. Mar Geophys Res 39:567–588. https://doi.org/10.1007/s11001-017-9333-4

    Article  Google Scholar 

  • Toker M, Pınar A, Tur H (2017) Source mechanisms and faulting analysis of the aftershocks in the Lake Erçek area (Eastern Anatolia, Turkey) during the 2011 Van event (Mw 7.1): implications for the regional stress field and ongoing deformation processes. J Asian Earth Sci 150:73–86

    Article  Google Scholar 

  • Toker M, Pınar A, Hoşkan N (2021) An integrated critical approach to off-fault strike-slip motion triggered by the 2011 Van mainshock (Mw 71), Eastern Anatolia (Turkey): new stress field constraints on subcrustal deformation. J Geodyn 147(101861):1–25. https://doi.org/10.1016/j.jog.2021.101861

    Article  Google Scholar 

  • Toker M (2015) Preliminary results of Lake Erçek Seismic Survey (LESS, in: 2015). Project Report in Scientific Research Projects-Coordination Unit, 2015-MİM-B119. Yuzuncu Yil University, Van.

  • Toker M, Sengör AMC, Demirel-Schluter F, Demirbağ E, Çukur D, Imren C, Niessen F, Group P-W (2017) The structural elements and tectonics of the Lake Van basin (Eastern Anatolia) from multi-channel seismic reflection profiles. J Afr Earth Sci 129:165–178

    Article  Google Scholar 

  • Toker M (2021) The Structural Coupling to Rupture Complexity of the Aftershock Sequence of the 2011 Earthquakes in Lake Van Area (Eastern Anatolia, Turkey). J Eng Sci Design. https://doi.org/10.21923/jesd.861520.

  • Tomonaga Y, Brennwald MS, Kipfer R (2011) Spatial distribution and flux of terrigenic He dissolved in the sediment pore water of Lake Van (Turkey). Geochim Cosmochim Acta 75(10):2848–2864

    Article  Google Scholar 

  • Tomonaga Y, Brennwald MS, Livingstone DM, Kwiecien O, Randlett M-È, Stockhecke M, Unwin K, Anselmetti FS, Beer J, Haug GH, Schubert CJ, Sturm M, Kipfer R (2017) Porewater salinity reveals past lake-level changes in Lake Van, the Earth’s largest soda lake. Sci Rep 7:313. https://doi.org/10.1038/s41598-017-00371-w

    Article  Google Scholar 

  • Tóth Zs, Spiess V, Jensen J (2014) Seismo-acoustic signatures of shallow free gas in the Bornholm Basin, Baltic Sea. Cont Shelf Res 88:228–239

    Article  Google Scholar 

  • Tóth Zs, Spiess V, Keil H (2015) Frequency dependence in seismoacoustic imaging of shallow free gas due to gas bubble resonance. J Geophys Res Solid Earth 120:8056–8072. https://doi.org/10.1002/2015JB012523

    Article  Google Scholar 

  • Türkoğlu E, Unsworth MJ, Cağlar I, Tuncer V, Avsar U (2008) Lithospheric structure of the Arabia-Eurasia collision zone in eastern Anatolia: magnetotelluric evidence for widespread weakening by fluids? Geology 36:619–622

    Article  Google Scholar 

  • Üner S (2017) Evolution of Çolpan barrier and lagoon complex (Lake Van-Turkey): sedimentological and hydrological approach. Quatern Int. https://doi.org/10.1016/j.quaint.2017.05.019

    Article  Google Scholar 

  • Van Daele M, Moernaut J, Doom L, Boes E, Fontijn K, Heirman K et al (2015) A comparison of the sedimentary records of the 1960 and 2010 great Chilean earthquakes in 17 lakes: Implications for quantitative lacustrine palaeoseismology. Sedimentology 62(5):1466–1496

    Article  Google Scholar 

  • Vardar D, Alpar B (2016) High-resolution seismic characterization of shallow gas accumulations in the southern shelf of marmara sea, Turkey. Acta Geophys 64(3):589–609. https://doi.org/10.1515/acgeo-2015-0059

    Article  Google Scholar 

  • Vardar D, Ozturk K, Yaltırak C, Alpar B, Tur H (2014) Late Pleistocene-Holocene evolution of the southern Marmara shelf and sub-basins: middle strand of the North Anatolian fault, southern Marmara Sea, Turkey. Mar Geophys Res 35(1):69–85. https://doi.org/10.1007/s11001-013-9210-8

    Article  Google Scholar 

  • Vigliotti L, Channell JET, Stockhecke M (2014) Paleomagnetism of Lake Van sediments: chronology and paleoenvironment since 350 ka. Quat Sci Rev 104:18–29. https://doi.org/10.1016/j.quascirev.2014.09.028

    Article  Google Scholar 

  • Visnovitz F, Bodnar T, Toth Zs, Spiess V, Kudo I, Timar G, Horvath F (2015) Seismic expressions of shallow gas in the lacustrine deposits of Lake Balaton, Hungary. Near Surf Geophys 2015(13):433–446. https://doi.org/10.3997/1873-0604.2015026

    Article  Google Scholar 

  • Wagner B, Francke A, Sulpizio R, Zanchetta G, Lindhorst K, Krastel S et al (2012) Possible earthquake trigger for 6th century mass wasting deposit at Lake Ohrid (Macedonia/Albania). Climate past 8(6):2069–2078

    Article  Google Scholar 

  • Wallner J (2008) Holozane Landschaftsentwicklung am Lago Budi, Chile (38, 9°C): Palaolimnologisch/palaoseismische Untersuchungen an Lagunensedimenten (Doctoral dissertation). University of Jena

    Google Scholar 

  • Whiticar MJ (2002) Diagenetic relationships of methanogenesis, nutrients, acoustic turbidity, pockmarks and freshwater seepages in Eckernforde Bay. Mar Geol 182(1–2):29–53. https://doi.org/10.1016/S0025-3227(01)00227-4

    Article  Google Scholar 

  • Wick L, Lemcke G, Sturm M (2003) Evidence of Late-glacial and Holocene climatic change and human impact in eastern Anatolia: high resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van Turkey. J. Paleolimnol Holocene 13:665–675

    Article  Google Scholar 

  • Wilkens RH, Richardson MD (1998) The influence of gas bubbles on sediment acoustic properties: in situ, laboratory, and theoretical results from Eckernförde Bay. Baltic Sea Cont Shelf Res 18(14):1859–1892. https://doi.org/10.1016/S0278-4343(98)00061-2

    Article  Google Scholar 

  • Wood W, Ruppel C (2000) Seismic and thermal investigations of hydrate bearing sediments on the Blake Ridge Crest: a synthesis of ODP Leg 164 results. Proc Ocean Drill Progr Final Rep 164:253–264

    Google Scholar 

  • Yeşilova Ç, Gülyüz E, Ci-Rong H, Chuan-Chou S (2019) Giant tufas of Lake Van record lake-level fluctuations and climatic changes in eastern Anatolia, Turkey. Palaeogeogr Palaeoclimatol Palaeoecol 533:1–9

    Article  Google Scholar 

  • Yeşilova Ç, Güngör Yeşilova P, Açlan M, Yu T-L, Shen C-C (2021) U-Th ages and facies properties of Edremit travertines and tufas, Van, Eastern Anatolia: implications for the neotectonics of the region. Geological Quarterly 65:28. https://doi.org/10.7306/gq.1597

    Article  Google Scholar 

  • Yun JW, Orange DL, Field ME (1999) Subsurface gas offshore of northern California and its link to submarine geomorphology. Mar Geol 154:357–368

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Yuzuncu Yıl University, Scientific Research Projects-Coordination Unit (SRP-CU), Van, Turkey for supporting the Lake Erçek Seismic Survey project, 2015 (Toker, 2015) and the research vessel scientific crew during the survey. This research was undertaken as part of a multidisciplinary LESS-2015 project of Istanbul University Cerrahpaşa (IU), Department of Geophysical Engineering, Istanbul and Yuzuncu Yıl University (YYU), Division of Earth Physics, Van (Turkey). The LESS-2015 project was supported by Research Fund of the Yuzuncu Yıl University (under Scientific Research Project Number: 2015-MİM-B119), and was partly supported by the University of Oulu (Oulu, Finland) post-doctoral research grant. The authors offer their greatest thanks to the editors and the two anonymous reviewers for their constructive comments and suggestions, which helped to improve the manuscript. The maps in this paper were generated using public domain generics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Toker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toker, M., Tur, H. Shallow seismic characteristics and distribution of gas in lacustrine sediments at Lake Erçek, Eastern Anatolia, Turkey, from high-resolution seismic data. Environ Earth Sci 80, 727 (2021). https://doi.org/10.1007/s12665-021-10039-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-10039-4

Keywords

Navigation