Skip to main content
Log in

Responses of in-service shield tunnel to overcrossing tunnelling in soft ground

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In dense urban areas, a new shield tunnel frequently crosses over in-service shield tunnels due to limited underground space. Construction of a new tunnel leads to relief of ground stress and soil displacement, which will inevitably result in a series of adverse impacts on the existing shield tunnels, such as tunnel heave, the dislocation between segmental rings, distortion of tunnel track. In this paper, a simplified analytical method was proposed to predict the responses of the in-service shield tunnel associated with overcrossing tunnelling in soft ground. The existing shield tunnel is treated as a Timoshenko beam. The tunnel-ground interaction is considered using the Pasternak foundation. The two-stage analysis method is used to divide the problem into two connected steps. First, overcrossing tunnelling-caused unloading loads imposing on the top surface of the existing tunnel are computed based on the Mindlin’s solution. Second, the tunnel deformation owing to the unloading loads is solved numerically by means of the finite difference method. The applicability of the proposed method is validated by two case histories in literature. The tunnel heaves predicted by the proposed method are in good agreement with the field measurements. According to the parametric analyses, it is found that when a new tunnel crosses over existing shield tunnel obliquely or parallelly, the induced tunnel heave is greater than that induced by perpendicularly crossing tunnelling. At given clearance between the new tunnel and the underlying existing shield tunnel, large-diameter tunnel excavation above causes greater tunnel heave and dislocation between adjacent rings than small-diameter tunnel. Improve the ground elastic modulus will effectively reduce tunnel heave when the ground elastic modulus is relatively low. To increase the equivalent shear stiffness will remarkably reduce dislocation between adjacent rings, however, its effects on reducing the tunnel heave is negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Attewell PB, Yeates J, Selby AR (1986) Soil movements induced by tunnelling and their effects on pipelines and structures. Blackie and Son Ltd, London

    Google Scholar 

  • Boonyarak T, Ng CWW (2016) Three-dimensional influence zone of new tunnel excavation crossing underneath existing tunnel. Jpn Geotech Soc Spec Publ 2(42):1512–1518

    Google Scholar 

  • Chen L, Huang HW, Wang RL (2006) Analysis of the observed longitudinal settlement of a tunnel caused by an adjacent shield tunnelling on top. China Civil Eng J 39(6):83–87 (in Chinese)

    Google Scholar 

  • Ghaboussi J, Hansmire WH, Parker HW, Kim KJ (1983) Finite element simulation of tunneling over subways. J Geotech Eng 109(3):318–334

    Article  Google Scholar 

  • Gue CY, Wilcock MJ, Alhaddad MM, Elshafie MZEB, Soga K, Mair RJ (2017) Monitoring the behaviour of an existing royal mail tunnel: London Underground bond street station upgrade works. In: UNSPECIFIED, pp 525–535

  • Hansmire W, Parker H, Ghaboussi J (1981) Effects of shield tunneling over subways. In: Proc 5th rapid excavation and tunneling conference, San Francisco, Vol 1, 254–276

  • Huang DZ, Ma XF, Wang JS, Li XY, Yu L (2012) Centrifuge modelling of effects of shield tunnels on existing tunnels in soft clay. Chin J Geotech Eng 34(3):520–527 (in Chinese)

    Google Scholar 

  • Li P, Du SJ, Ma XF, Yin ZY, Shen SL (2014) Centrifuge investigation into the effect of new shield tunnelling on an existing underlying large-diameter tunnel. Tunn Undergr Space Technol 42(5):59–66

    Article  Google Scholar 

  • Liang RZ (2019) Simplified analytical method for evaluating the effects of overcrossing tunnelling on existing shield tunnels using the nonlinear Pasternak foundation model. Soils Found 59(6):1711–1727

    Article  Google Scholar 

  • Liang RZ, Xia TD, Hong Y, Yu F (2016) Effects of over-crossing tunnelling on the existing shield tunnels. Tunn Undergr Space Technol 58(9):159–176

    Article  Google Scholar 

  • Liang RZ, Xia TD, Huang MS, Lin CG (2017) Simplified analytical method for evaluating the effects of adjacent excavation on shield tunnel considering the shearing effect. Comput Geotech 81(1):167–187

    Article  Google Scholar 

  • Liang RZ, Zong MF, Kang C, Wu WB, Fang YX, Xia TD, Cheng K (2018) Longitudinal impacts of existing shield tunnel due to down-crossing tunnelling considering shield tunnel shearing effect. J Zhejiang Univ Eng Sci 52(03):420-430+472 (in Chinese)

    Google Scholar 

  • Liu HY, Small JC, Carter JP, Williams DJ (2009) Effects of tunnelling on existing support systems of perpendicularly crossing tunnels. Comput Geotech 36(5):880–894

    Article  Google Scholar 

  • Liu HL, Li P, Liu J (2010) Numerical investigation of underlying tunnel heave during a new tunnel construction. Tunneling Undergr Space Technol 26(2):276–283

    Article  Google Scholar 

  • Mindlin RD (1936) Force at a point in the interior of a semi-infinite solid. J Appl Phys 7(5):195–202

    Google Scholar 

  • Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD) (2013) Technical code for protection structures of urban rail transit (CJJ/T 202–2013) (in Chinese)

  • Mohamad H, Bennett PJ, Soga K (2010) Behaviour of an old masonry tunnel due to tunneling-induced ground settlement. Géotechnique 60(12):927–938

    Article  Google Scholar 

  • Ng CWW, Boonyarak T, Masin D (2013) Three-dimensional centrifuge and numerical modeling of the interaction between perpendicularly crossing tunnels. Can Geotech J 50(9):935–946

    Article  Google Scholar 

  • Ng CWW, Boonyarak T, Masin D (2015) Effects of pillar depth and shielding on the interaction of crossing multitunnels. J Geotech Geoenviron Eng 141(6):04015021

    Article  Google Scholar 

  • Shanghai municipal standards. Technical code for protection region of urban bridge and tunnels (2010) Shanghai Urban Construction and Communications Commission, Administrative Decree of No 511 (In Chinese)

  • Shen SL, Wu HN, Cui YJ (2014) Long-term settlement behaviour of metro tunnels in the soft deposits of Shanghai. Tunn Undergr Space Technol 40(2):309–323

    Article  Google Scholar 

  • Shiba Y, Kawashima K, Obinata N (1988) Evaluation method of longitudinal stiffness of shield tunnel linings for application to seismic response analysis. Proc Jpn Soc Civ Eng 398:319–327 (in Japanese)

    Google Scholar 

  • Tanahashi H (2004) Formulas for an infinitely long Bernoulli-Euler beam on the Pasternak model. J Jpn Geotech Soc Soils Found 44(5):109–118

    Article  Google Scholar 

  • Timoshenko SP (1921) On the correction for shear of the differential equation for transverse vibration of prismatic bars. Philos Mag 41:744–746

    Article  Google Scholar 

  • Timoshenko SP (1922) On the transverse vibrations of bars of uniform cross-section. Philos Mag 43:125–131

    Article  Google Scholar 

  • Wu HN, Shen SL, Liao SM (2015) Longitudinal structural modelling of shield tunnels considering shearing dislocation between segmental rings. Tunn Undergr Space Technol 50:317–323

    Article  Google Scholar 

  • Xu L (2005) Study on the longitudinal settlement of shield tunnel in soft soil. Dissertation, Tongji University (in Chinese)

  • Yu H, Cai C, Bobet A, Zhao X, Yuan Y (2019) Analytical solution for longitudinal bending stiffness of shield tunnels. Tunn Undergr Space Technol 83:27–34

    Article  Google Scholar 

  • Zhang ZG, Huang MS (2014) Geotechnical influence on existing subway tunnels induced by multiline tunneling in Shanghai soft soil. Comput Geotech 56(56):121–132

    Article  Google Scholar 

  • Zhang DW, Liu B, Qi YJ (2016) Construction of a large-section long pedestrian underpass using pipe jacking in muddy silty clay: a case study. Tunn Undergr Space Technol 60(11):151–164

    Article  Google Scholar 

  • Zhang DM, Huang ZK, Li ZL, Zong X, Zhang DM (2019) Analytical solution for the response of an existing tunnel to a new tunnel excavation underneath. Comput Geotech 108:197–211

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by National Natural Science Foundation of China (Nos. 41807262 and 41702313), Natural Science Foundation of Hubei Province (No. 2018CFB179), China Postdoctoral Science Foundation (No. 2019M653308), Research project of Wuhan Municipal Construction Group Co., Ltd. (No. wszky202013), and Anhui Housing Urban and Rural Construction Science and Technology Program Project (No.2020-YF44).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cungang Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Matrices and vectors in Eq. (13)

$$[K_{1} ]{ = }\frac{1}{{l^{4} }}\left[ {\begin{array}{*{20}c} {A_{1} } & {A_{2} } & 2 & {} & {} & {} & {} & {} & {} \\ {A_{3} } & 5 & { - 4} & 1 & {} & {} & {} & {} & {} \\ 1 & { - 4} & 6 & { - 4} & 1 & {} & {} & {} & {} \\ {} & 1 & { - 4} & 6 & { - 4} & 1 & {} & {} & {} \\ {} & {} & \ddots & \ddots & \ddots & \ddots & \ddots & {} & {} \\ {} & {} & {} & 1 & { - 4} & 6 & { - 4} & 1 & {} \\ {} & {} & {} & {} & 1 & { - 4} & 6 & { - 4} & 1 \\ {} & {} & {} & {} & {} & 1 & { - 4} & 5 & {A_{3} } \\ {} & {} & {} & {} & {} & {} & 2 & {A_{2} } & {A_{1} } \\ \end{array} } \right]_{(n + 1) \times (n + 1)}$$
(23)
$$[K_{2} ] = \frac{{\Phi_{{{\text{eq}}}} G_{{\text{c}}} D + kD\left( {EI} \right)_{{{\text{eq}}}} }}{{\left( {EI} \right)_{{{\text{eq}}}} \left( {\Phi_{{{\text{eq}}}} + G_{{\text{c}}} D} \right)l^{2} }}\left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} B \\ 1 \\ {} \\ \end{array} } \\ {} \\ {\begin{array}{*{20}c} {} \\ {} \\ {} \\ \end{array} } \\ \end{array} \begin{array}{*{20}c} {\begin{array}{*{20}c} {} \\ { - 2} \\ 1 \\ \end{array} } \\ {} \\ {\begin{array}{*{20}c} {} \\ {} \\ {} \\ \end{array} } \\ \end{array} \begin{array}{*{20}c} {\begin{array}{*{20}c} {} \\ 1 \\ { - 2} \\ \end{array} } \\ \ddots \\ {\begin{array}{*{20}c} {} \\ {} \\ {} \\ \end{array} } \\ \end{array} \begin{array}{*{20}c} {\begin{array}{*{20}c} {} \\ {} \\ 1 \\ \end{array} } \\ \ddots \\ {\begin{array}{*{20}c} 1 \\ {} \\ {} \\ \end{array} } \\ \end{array} \begin{array}{*{20}c} {\begin{array}{*{20}c} {} \\ {} \\ {} \\ \end{array} } \\ \ddots \\ {\begin{array}{*{20}c} { - 2} \\ 1 \\ {} \\ \end{array} } \\ \end{array} \begin{array}{*{20}c} {\begin{array}{*{20}c} {} \\ {} \\ {} \\ \end{array} } \\ {} \\ {\begin{array}{*{20}c} 1 \\ { - 2} \\ {} \\ \end{array} } \\ \end{array} \begin{array}{*{20}c} {\begin{array}{*{20}c} {} \\ {} \\ {} \\ \end{array} } \\ {} \\ {\begin{array}{*{20}c} {} \\ 1 \\ B \\ \end{array} } \\ \end{array} } \right]_{(n + 1) \times (n + 1)}$$
(24)
$$[K_{3} ] = \frac{{kD\Phi_{{{\text{eq}}}} }}{{\left( {EI} \right)_{{{\text{eq}}}} \left( {\Phi_{{{\text{eq}}}} + G_{{\text{c}}} D} \right)}}\left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 1 \\ {} \\ \end{array} } & {\begin{array}{*{20}c} {} \\ 1 \\ \end{array} } & {\begin{array}{*{20}c} {} \\ {} \\ \end{array} } & {\begin{array}{*{20}c} {\begin{array}{*{20}c} {} & {} \\ \end{array} } \\ {\begin{array}{*{20}c} {} & {} \\ \end{array} } \\ \end{array} } \\ {} & {} & \ddots & {\begin{array}{*{20}c} {} & {} \\ \end{array} } \\ {} & {} & {} & {\begin{array}{*{20}c} 1 & {} \\ \end{array} } \\ {} & {} & {} & {\begin{array}{*{20}c} {} & 1 \\ \end{array} } \\ \end{array} } \right]_{(n + 1) \times (n + 1)}$$
(25)
$$\{ Q_{1} \} = \frac{{D\Phi_{{{\text{eq}}}} }}{{\left( {EI} \right)_{{{\text{eq}}}} \left( {\Phi_{{{\text{eq}}}} + G_{{\text{c}}} D} \right)}}\left\{ {q_{0} ,q_{1} , \ldots ,q_{i} , \ldots ,q_{n - 1} ,q_{n} } \right\}^{{\text{T}}}$$
(26)
$$\{ Q_{2} \} = \frac{D}{{\left( {\Phi_{{{\text{eq}}}} + G_{{\text{c}}} D} \right)l^{2} }}\left[ {\begin{array}{*{20}c} {q_{1} - 2q_{0} + q_{ - 1} } \\ {q_{2} - 2q_{1} + q_{0} } \\ \vdots \\ {q_{n} - 2q_{n - 1} + q_{n - 2} } \\ {q_{n + 1} - 2q_{n} + q_{n - 1} } \\ \end{array} } \right]_{(n + 1) \times 1}$$
(27)
$$\{ Q_{3} \} = \left\{ {C_{1} ,C_{2} ,0,0, \ldots ,0,0,C_{3} ,C_{4} } \right\}^{{\text{T}}}$$
(28)

where \(A_{1} = \frac{{k^{2} D_{{}}^{2} l^{4} }}{{\left( {\Phi_{{{\text{eq}}}} + G_{{\text{c}}} D} \right)^{2} }} + 2\); \(A_{2} = - \frac{{2kDl^{2} }}{{\left( {\Phi_{{{\text{eq}}}} + G_{{\text{c}}} D} \right)}} - 4\); \(A_{3} = \frac{{kDl^{2} }}{{\Phi_{{{\text{eq}}}} + G_{{\text{c}}} D}} - 2\); \(B = \frac{{kDl^{2} }}{{\Phi_{{{\text{eq}}}} + G_{{\text{c}}} D}}\); \(C_{1} = \frac{{2Dq_{0} }}{{\left( {\Phi_{{{\text{eq}}}} + G_{{\text{c}}} D} \right)l^{2} }} + \frac{D}{{\left( {\Phi_{{{\text{eq}}}} + G_{{\text{c}}} D} \right)l^{2} }}\left( {q_{1} - q_{ - 1} } \right)\); \(C_{4} = \frac{{2Dq_{n} }}{{\left( {\Phi_{{{\text{eq}}}} + G_{{\text{c}}} D} \right)l^{2} }} + \frac{D}{{\left( {\Phi_{{{\text{eq}}}} + G_{{\text{c}}} D} \right)l^{2} }}\left( {q_{n + 1} - q_{n - 1} } \right)\); \(C_{2} = - \frac{D}{{\left( {\Phi_{{{\text{eq}}}} + G_{{\text{c}}} D} \right)l^{2} }}q_{0}\); \(C_{3} = - \frac{D}{{\left( {\Phi_{{{\text{eq}}}} + G_{{\text{c}}} D} \right)l^{2} }}q_{n}\).

Appendix B. Expressions of matrices and vectors of Eq. (16)

$$[W_{1} ] = - \frac{{(EI)_{{{\text{eq}}}} (\Phi_{{{\text{eq}}}} + G_{{\text{c}}} D)}}{{2\Phi_{{{\text{eq}}}} l^{3} }}\left[ {\begin{array}{*{20}c} {E_{1} } & {E_{2} } & {} & {} & {} & {} & {} & {} & {} \\ {E_{3} } & 1 & { - 2} & 1 & {} & {} & {} & {} & {} \\ { - 1} & 2 & { - 2} & 1 & {} & {} & {} & {} & {} \\ {} & \ddots & \ddots & \ddots & \ddots & {} & {} & {} & {} \\ {} & {} & { - 1} & 2 & { - 2} & 1 & {} & {} & {} \\ {} & {} & {} & \ddots & \ddots & \ddots & \ddots & {} & {} \\ {} & {} & {} & {} & { - 1} & 2 & { - 2} & 1 & {} \\ {} & {} & {} & {} & {} & { - 1} & 2 & { - 1} & { - E_{3} } \\ {} & {} & {} & {} & {} & {} & {} & { - E_{2} } & { - E_{1} } \\ \end{array} } \right]_{(n + 1) \times (n + 1)} ;$$
(29)
$$[W_{2} ] = \frac{{(EI)_{{{\text{eq}}}} kD}}{{2\Phi_{{{\text{eq}}}} l}}\left[ {\begin{array}{*{20}c} {G_{1} } & 2 & {} & {} & {} & {} & {} & {} & {} \\ { - 1} & 0 & 1 & {} & {} & {} & {} & {} & {} \\ {} & { - 1} & 0 & 1 & {} & {} & {} & {} & {} \\ {} & {} & {} & \ddots & \ddots & {} & {} & {} & {} \\ {} & {} & {} & { - 1} & 0 & 1 & {} & {} & {} \\ {} & {} & {} & {} & {} & \ddots & \ddots & {} & {} \\ {} & {} & {} & {} & {} & { - 1} & 0 & 1 & {} \\ {} & {} & {} & {} & {} & {} & { - 1} & 0 & 1 \\ {} & {} & {} & {} & {} & {} & {} & { - 2} & { - G_{1} } \\ \end{array} } \right]_{(n + 1) \times (n + 1)} ;$$
(30)
$$\left[ {Q_{4} } \right] = - \frac{{(EI)_{{{\text{eq}}}} D}}{{2\Phi_{{{\text{eq}}}} l}}\left\{ {\begin{array}{*{20}c} {q_{1} - q_{ - 1} } \\ {q_{2} - q_{0} } \\ \vdots \\ {q_{i + 1} - q_{i - 1} } \\ \vdots \\ {q_{n} - q_{n - 2} } \\ {q_{n + 1} - q_{n - 1} } \\ \end{array} } \right\}_{1 \times (n + 1)} ;$$
(31)
$$[Q_{5} ] = \frac{{(EI)_{{{\text{eq}}}} }}{{\Phi_{{{\text{eq}}}} }}\left\{ {\begin{array}{*{20}c} {F_{1} } \\ {F_{2} } \\ \vdots \\ {F^{\prime}_{2} } \\ {F^{\prime}_{1} } \\ \end{array} } \right\};$$
(32)

where \(E_{1} = \frac{{ - 2kDl^{2} }}{{\Phi_{{{\text{eq}}}} + G_{{\text{c}}} D}} - \frac{{k^{2} D^{2} l^{4} }}{{(\Phi_{{{\text{eq}}}} + G_{{\text{c}}} D)^{2} }}\); \(E_{2} = \frac{{2kDl^{2} }}{{\Phi_{{{\text{eq}}}} + G_{{\text{c}}} D}}\); \(E_{3} = - \frac{{kDl^{2} }}{{\Phi_{{{\text{eq}}}} + G_{{\text{c}}} D}}\); \(F_{1} = - \frac{{D(q_{1} - q_{ - 1} )}}{2l}\); \(F_{1}^{\prime } = \frac{{D(q_{n - 1} - q_{n + 1} )}}{2l}\); \(F_{2} = \frac{D}{2l}q_{0}\); \(F^{\prime}_{2} = - \frac{D}{2l}q_{n}\); \(G_{1} = - 2 - \frac{{kDl^{2} }}{{\Phi_{{{\text{eq}}}} + G_{{\text{c}}} D}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, R., Kang, C., Xiang, L. et al. Responses of in-service shield tunnel to overcrossing tunnelling in soft ground. Environ Earth Sci 80, 183 (2021). https://doi.org/10.1007/s12665-021-09374-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-09374-3

Keywords

Navigation