Skip to main content
Log in

A geochemical assessment and modeling of industrial groundwater contamination by orthophosphate and fluoride in the Gabes-North aquifer, Tunisia

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In Tunisia, chemical industries are thought to be the cause of various environmental problems and more particularly the cause of groundwater quality deterioration and contamination. Within this scope, this study assesses the shallow-water quality of the Gabes-North aquifer with regard to the phosphate industry and also to model current and possible future contamination. This allows also the identification of factors that govern the spatial–temporal variation of the main sources of pollution. For that, 60 shallow groundwater samples were collected during the years 2013 and 2014 within and around the industrial chemical phosphate complex of Ghannouche–Gabes. Hydrogeochemical investigation permitted the detection of high concentrations of fluoride and orthophosphates in the sampled waters reaching 12 mg/l and 47 mg/l, respectively. The H2PO4 and F ion transport model using the Visual MODFLOW software was calibrated and validated by the 2013 and 2014 observed data and was simulated for 6205 days up to the year 2030. The model showed that from 365 to 6205 days, the ions H2PO4 and F migrated from 100 to 250 m and from 80 to 200 m, respectively, depending on groundwater flow direction. Predictive simulations indicate that the transport rate of these ions can go up to 2.5 times in 2030 compared to those detected in 2014. This integrated investigation in this current study proves that regular pollution constitutes a threat at a given local scale, but can also be used as a reference for reasonable water resources management on a larger scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Bahri A (1998) Wastewater reclamation and reuse in Tunisia. In: Asano T (ed) Wastewater reclamation and reuse, water quality management library, vol 10. Technomic Publishing Co Inc, Lancaster, pp 877–916

    Google Scholar 

  • Banton OLM (1999) Bangoy Multiscience environnementale des eaux souterraines. Presse de l’Université du Québec Hydrogéologie 460

  • Barnett B, Townley LR, Post V, Evans RE, Hunt RJ, Peeters L, Boronkay A (2012) Australian groundwater modelling guidelines. National Water Commission, Canberra

    Google Scholar 

  • Bear J, Beljin MS, Ross RR (1992) Fundamentals of ground-water modelling ground Water Issue, EPA/540/S-92/005, 2–11

  • Ben Amor R (2007) Géochimie des eaux et des sédiments du littoral Ghannouche- Gabès (Golfe de Gabès), Impact des rejets de phosphogypse. Doc thesis, Univ. FST. Tunis, 189

  • Ben Baccar B (1982) Contribution à l’étude hydrologique de l’aquifère multicouche de Gabès-Sud. Doc thesis, Univ. Paris–Sud, 116

  • Ben Cheikh N (2013) Etude des relations hydrodynamiques entre la nappe profonde de Sfax et les systèmes aquifères méridionaux (Menzel Habib et Gabès Nord): Origines et mécanismes de minéralisation des eaux souterraines. Doc thesis, ENIS, Sfax, Tunisia: University of Sfax, 162

  • Ben Ouezdou H (1983) Etudes morphologique et stratigraphiques des formations quaternaires dans les alentours du golfe de Gabès. Doc thesis, Universitty of Tunis, 220

  • Bhutiani R, Kulkarni DB, Khanna DR, Gautam A (2016) Water quality, pollution source apportionment and health risk assessment of heavy metals in groundwater of an industrial area in North India. Expo Health 8(1):3–18

    Article  Google Scholar 

  • Böhlke JK, Mroczkowski SJ, Coplen TB (2003) Oxygen isotopes in nitrate: New reference materials for 18O: 17O: 16O measurements and observations on nitrate-water equilibration. Rapid Commun Mass Spectrom 17(16):1835–1846

    Article  Google Scholar 

  • Chernet T, Travi Y, Valles V (2001) Mechanism of degradation of the quality of natural water in the Lakes Region of the Ethiopian rift valley. Water Res 35(12):2819–2832

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133(3465):1702–1703

    Article  Google Scholar 

  • De Filippis G, Margiotta S, Branca C, Negri SL (2019) A modelling approach for assessing the hydrogeological equilibrium of the karst, coastal aquifer of the Salento Peninsula (Southeastern Italy): evaluating the effects of a mar facility for wastewater reuse. Groundwater Qual Mediterr Reg. https://doi.org/10.1155/2019/5714535

    Article  Google Scholar 

  • De Windt L, Spycher NF (2019) Reactive transport modeling: a key performance assessment tool for the geologic disposal of nuclear waste. Elements 15(2):99–102

    Article  Google Scholar 

  • Dhaoui Z, Zouari K, Taupin JD, Farouni R (2016) Hydrochemical and isotopic investigations as indicators of recharge processes of the continental intercalaire aquifer (eastern piedmont of Dahar, southern Tunisia). Environ Earth Sci 75(16):1186

    Article  Google Scholar 

  • Drever JI (1988) The geochemistry of natural waters, Vol 437, prentice Hall, Englewood Cliffs

  • Emvoutou HC, Tandia BK, Nkot SNB, Ebonji RC, Nlend YB, Ekodeck GE, Faye S (2018) Geologic factors controlling groundwater chemistry in the coastal aquifer system of Douala/Cameroon: implication for groundwater system functioning. Environ Earth Sci 77(5):219

    Article  Google Scholar 

  • Falkenmark M, Rockstrom J, Rockström J (2004) Balancing water for humans and nature: the new approach in ecohydrology. Earthscan, p 246. ISBN 1-85383-927-2

  • Fritz B (1981) Thermodynamic study and modelling of hydrothermal and diagenetic reactions. State Doctorate of sciences, University Louis Pasteur, in French: Etude thermodynamique et modélisation des réactions hydrothermales et diagénétiques. Published in: Sci Géol, Mém., 65, 197

  • Gauthier C (2002) Contribution to the study of fractionation of free aluminium in solutions of forest soils Faculté des Sciences et Techniques, Université de Limoges Influence of quality and nature of organic matter 156

  • GCT (2003) Groupe Chimique Tunisien Etude d’impact des rejets de phosphogypse de l’unité de l’acide phosphorique. Internal Report, 191

  • GCT (2009) Groupe chimique Tunisien. Rapport de reconnaissance géotechnique des sites des usines à Sfax, Skhira et Gabès. Internal report of the Tunisian Phosphate Company, 67, 2009

  • GCT (2011) GroupeChimiqueTunisien. Rapport complet pour le Lot 1 pour la caractérisation environnementale des sites des usines à Sfax, Skhira et Gabès. Internal report of the Tunisian phosphate company, 84

  • Gueddari M (1983) Géochimie et thermodynamique des évaporites continentals, étude du lac Natron en Tanzanie et du Chott El Jrid en Tunisie University of Louis Pasteur, Strasbourg Thesis 143

  • INM (2015) National Institute of Meteorology of Tunisia, climate data report for the period 2005–2015

  • Jedoui Y, Kallel N, Fontugne M, Ismail HB, M'Rabet A, Montacer M (1998) A high relative sea-level stand in the middle Holocene of southeastern Tunisia. Mar Geol 147(1–4):123–130

    Article  Google Scholar 

  • Lapworth DJ, Nkhuwa DCW, Okotto-Okotto J, Pedley S, Stuart ME, Tijani MN, Wright J (2017) Urban groundwater quality in sub-Saharan Africa: current status and implications for water security and public health. Hydrogeol J 25(4):1093–1116

    Article  Google Scholar 

  • Lee L, Helsel D (2005) Statistical analysis of water-quality data containing multiple detection limits: S-language software for regression on order statistics. Comput Geosci 31(10):1241–1248

    Article  Google Scholar 

  • Li P, Zhang Y, Yang N, Jing L, Yu P (2016) Major ion chemistry and quality assessment of groundwater in and around a mountainous tourist town of China. Expo Health 8(2):239–252

    Article  Google Scholar 

  • Liu D, Jivkov AP, Wang L, Si G, Yu J (2017) Non-Fickian dispersive transport of strontium in laboratory-scale columns: modelling and evaluation. J Hydrol 549:1–11

    Article  Google Scholar 

  • Luckner L (2017) Migration Processes in the Soil and Groundwater Zone (1991). CRC Press, Boca Raton

    Google Scholar 

  • Ma J, Stevens GW, Mumford KA (2018) The performance of diphenyldichlorosilane coated ammonium exchange zeolite and its application in the combination of adsorption and biodegradation of hydrocarbon contaminated ground water. Chem Eng J 347:415–423

    Article  Google Scholar 

  • Machiwal D, Cloutier V, Güler C, Kazakis N (2018) A review of GIS-integrated statistical techniques for groundwater quality evaluation and protection. Environ Earth Sci 77(19):681

    Article  Google Scholar 

  • Maliki MA, Krimissa M, Michelot JL, Zouari K (2000) Relation entre nappes superficielles et aquifère profond dans le bassin de Sfax (Tunisie). Comptes Rendus de l'Académie des Sci-Ser IIA-Earth Planet Sci 331(1):1–6

    Google Scholar 

  • Mamou A (1990) Caractéristiques et évaluation des ressources en eau du Sud tunisien. Doc thesis, 403

  • McCance W, Jones OAH, Edwards M, Surapaneni A, Chadalavada S, Currell M (2018) Contaminants of emerging concern as novel groundwater tracers for delineating wastewater impacts in urban and peri-urban areas. Water Res 146:118–133

    Article  Google Scholar 

  • Melki S, Gueddari M (2018) Impact Assessment of phosphogypsum leachate on groundwater of sfax-agareb (Southeast of Tunisia): using geochemical and isotopic investigation. J Chem. https://doi.org/10.1155/2018/2721752

    Article  Google Scholar 

  • Melki S, Asmi E, Mabrouk A, Gueddari M (2019) Inferred Industrial and agricultural activities impact on groundwater quality of Skhira coastal phreatic aquifer in Southeast of Tunisia (Mediterranean Region). Geofluids. https://doi.org/10.1155/2019/9465498

    Article  Google Scholar 

  • Mondal NC, Singh VS (2009) Mass transport modeling of an industrial belt using visual MODFLOW and MODPATH: a case study. J Geogra Reg Plan 2(1):001–019  

    Google Scholar 

  • O'Connor D, Hou D, Ok YS, Song Y, Sarmah AK, Li X, Tack FM (2018) Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: a review. J Control Release 283:200–213

    Article  Google Scholar 

  • Okere UV, Semple KT (2012) Biodegradation of PAHs in ‘Pristine’ soils from different climatic regions. J Bioremed Biodegrad S1:006. https://doi.org/10.4172/2155-6199.S1-006

    Article  Google Scholar 

  • Padilla I, Irizarry C, Steele K (2011) Historical contamination of groundwater resources in the north coast karst aquifers of Puerto Rico. Revista Dimens 3:7

    Google Scholar 

  • Panno SV, Hackley KC, Hwang HH, Greenberg SE, Krapac IG, Landsberger S, O'kelly DJ (2006) Characterization and identification of Na–Cl sources in ground water Groundwater 44(2):176–187

  • Parkhurst D L, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations (No. 6-A43). US Geological Survey

  • Pavlidis G, Tsihrintzis VA (2018) Environmental benefits and control of pollution to surface water and groundwater by agroforestry systems: a review. Water Resour Manage 32(1):1–29

    Article  Google Scholar 

  • Rutherford PM, Dudas MJ, Samek RA (1994) Environmental impacts of phosphogypsum. Sci Total Environ 149:1–38

    Article  Google Scholar 

  • Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    Article  Google Scholar 

  • Skinner BJ (1979) Earth resources. Proc Natl Acad Sci 76(9):4212–4217

    Article  Google Scholar 

  • Spitz K, Moreno J (1996) A practical guide to groundwater and solute transport modeling. Wiley, New York

    Google Scholar 

  • Stumm W, Morgan JJ (1970) Aquatic chemistry An introduction emphasizing chemical equilibria in natural water. Wiley Interscience Ed, New York, pp 450

  • Telahigue F, Agoubi B, Souid F, Kharroubi A (2018) Assessment of seawater intrusion in an arid coastal aquifer, south-eastern Tunisia, using multivariate statistical analysis and chloride mass balance. Phys Chem Earth Parts A/B/C 106:37–46

    Article  Google Scholar 

  • Trabelsi R, Abid K, Zouari K, Yahyaoui H (2012) Groundwater salinization processes in shallow coastal aquifer of Djeffara plain of Medenine. Southeast Tunisia Environ Earth Sci 66(2):641–653

    Article  Google Scholar 

  • Travi Y (1993) Hydrologie et Hydrochirnie des aquiferes du Sénégal, Hydrogéochimie du fluor dans les eaux souterraines. Mémoire N095, institut de géologie, Université Louis Pasteur de Strabourg et Centre de Géochimie de la surface, CNRS, 1, rue Blessig, F-67084 STRABOURG Cedex France : 155

  • Turkeltaub T, Kurtzman D, Dahan O (2016) Real-time monitoring of nitrate transport in the deep vadose zone under a crop field–implications for groundwater protection. Hydrol Earth Syst Sci 20(8):3099–3108

    Article  Google Scholar 

  • Wolthoorn A, Temminghoff EJ, Van Riemsdijk WH (2004) Effect of synthetic iron colloids on the microbiological NH4+ removal process during groundwater purification. Water Res 38(7):1884–1892

    Article  Google Scholar 

  • Worthington EB (2013) Arid land irrigation in developing countries: environmental problems and effects. Elsevier, Amsterdam

    Google Scholar 

  • Zheng C, Wang P (1999) MT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems; documentation and user's guide. Alabama Univ University

  • Zheng Z, Aagaard P, Breedveld GD (2002) Sorption and anaerobic biodegradation of soluble aromatic compounds during groundwater transport. 1. Laboratory column experiments. Environ Geol 41(8):922–932

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Melki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melki, S., Asmi, A.M.E., Sy, M.O.B. et al. A geochemical assessment and modeling of industrial groundwater contamination by orthophosphate and fluoride in the Gabes-North aquifer, Tunisia. Environ Earth Sci 79, 135 (2020). https://doi.org/10.1007/s12665-020-8857-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-020-8857-0

Keywords

Navigation