Skip to main content

Advertisement

Log in

The influence of human activities on Pampean streams catchment: a biogeochemical approach

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Pampean streams constitute a drainage network which discharges continental freshwater into the associated marine coastal zone. The present study concerned a set of streams within General Pueyrredón district, Southeastern province of Buenos Aires, Pampa’s region, Argentina, which deserves particular attention, since they flow in the area of influence of Mar del Plata, one of the most important tourist destination in the country. Different physical–chemical (i.e., temperature, conductivity, pH, dissolved oxygen), hydrographical and eco-physiological parameters were studied within five streams along an annual cycle, searching for seasonal variations and possible relations with land use. The behavior of physical–chemical parameters was consistent with previous reports on similar environments; inorganic nutrients presented high levels along the whole period, and have never been completely depleted. Within N nutrients, nitrate demonstrated to be the dominant along the whole period, with global mean values of ~ 18 µM and reaching values up to ~ 50 µM (total discharge of N ~ 1.23 Ton DIN y−1). A very high load of organic matter (from ~ 2000 mg Cm−3 in the fall up to ~ 4000 mg Cm−3 during summer) is discharged from these streams into the marine coastal zone (which represents ~ 214 Ton POC y−1) and, even until now, response effects have not been recorded there. The obtained results allowed us to sustain that anthropic activities (i.e., agriculture, cattle raising), continental runoff and climate conditions seem to be the main drivers of the hydrographical/biogeochemical behavior of the studied streams. Therefore, changes concerning them should also be included in future monitoring programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acuña V, Vilches C, Giorgi A (2011) As productive and slow as a stream can be—the metabolism of a Pampean stream. J N Am Bentholog Soc 30(1):71–83

    Google Scholar 

  • Alexander RB, Smith RA, Schwarz GE, Boyer EW, Nolan JV, Brakebill JW (2008) Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River Basin. Environ Sci Technol 42:822–830

    Google Scholar 

  • Amsler ML, Drago EC (2009) A review of the suspended sediment budget at the confluence of the Paraná and Paraguay Rivers. Hydrol Process 23(22):3230–3235

    Google Scholar 

  • Amuchástegui G, di Franco L, Feijoó CJ (2016) Catchment morphometric characteristics, land use and water chemistry in Pampean streams: a regional approach. Hydrobiologia 767(1):65–79

    Google Scholar 

  • APHA (2005) Standard methods for the examination of water and wastewaters, 21st edn. American Public Health Association - American Water Works Association and Water Pollution Control Federation, Washington, p 1183

    Google Scholar 

  • Baldi G, Guerschman J, Paruelo J (2006) Characterizing fragmentation in temperate South America grasslands. Agric Ecosyst Environ 116:197–208

    Google Scholar 

  • Barbieri P, Echeverría H, Sainz Rozas H (2009) Nitratos en el suelo a la siembra o al macollaje como diagnóstico de la nutrición nitrogenada en trigo en el Sudeste Bonaerense. Ciencia del Suelo 27(1):41–47

    Google Scholar 

  • Barbini B (2003) Viabilidad del turismo productivo agropecuario en el interior bonaerense. Aportes y transferencias 1:97–108

    Google Scholar 

  • Bauer DE, Donadelli J, Gómez N, Licursi M, Ocón C, Paggi AC, Rodríguez Capítulo A, Tangorra M (2002) Ecological status of the Pampean plain streams and rivers (Argentina). Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 28:259–262

    Google Scholar 

  • Berardo A, Marino MA (2000a) Fertilización fosfatada de pasturas en el sudeste bonaerense. I. Residualidad del fósforo aplicado y efecto de las refertilizaciones anuales. Revista Argentina de Producción Animal 20(2):103–111

    Google Scholar 

  • Berardo A, Marino MA (2000b) Efecto de la fertilización fosfatada sobre la disponibilidad de fósforo y su relación con la producción de forraje en molisoles del sudeste bonaerense. II. Alfalfa. In: XVII Congreso Argentino de la Ciencia del Suelo, Mar del Plata (Argentina), 11 - 14 de abril de 2000. (in CD)

  • Bert FE, Podestá GP, Rovere SL, Menéndez ÁN, North M, Tatara E, Laciana CE, Weber E, Ruiz Toranzo F (2011) An agent based model to simulate structural and land use changes in agricultural systems of the argentine pampas. Ecol Model 222:3486–3499

    Google Scholar 

  • Bianchi TS (2011) The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. Proc Natl Acad Sci USA-PNAS 108(49):19473–19481

    Google Scholar 

  • Bilenca D, Codesido M, González Fischer C, Pérez Carusi L, Zufiaurre E, Abba A (2012) Impactos de la transformación agropecuaria sobre la biodiversidad en la provincia de Buenos Aires. Revista del Museo Argentino de Ciencias Naturales 14(2):189–198

    Google Scholar 

  • Bocanegra E, Quiroz-Londoño OM, Martínez DE, Romanelli A (2013) Quantification of the water balance and hydrogeological processes of groundwater–lake interactions in the Pampa Plain, Argentina. Environ Earth Sci 68(8):2347–2357

    Google Scholar 

  • Boon PJ, Raven PJ (eds) (2012) River conservation and management. Wiley, Chichester, p 372  (ISBN 978-0-470-68208-1)

    Google Scholar 

  • Borrelli N, Osterrieth M, Romanelli A, Alvarez MF, Cionchi JL, Massone H (2012) Biogenic silica in wetlands and their relationship with soil and groundwater biogeochemistry in the Southeastern of Buenos Aires Province, Argentina. Environ Earth Sci 65(2):469–480

    Google Scholar 

  • Bosch Mayol M, Costa JL, Cabria FN, Aparicio VC (2012) Relación entre la variabilidad especial de la conductividad eléctrica y el contenido de sodio del suelo. Ciencia del Suelo 30(2):95–105

    Google Scholar 

  • Bouwman AF, Bierkens MFP, Griffioen J, Hefting MM, Middelburg JJ, Middelkoop H, Slomp CP (2013) Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: towards integration of ecological and biogeochemical models. Biogeosciences 10:1–23

    Google Scholar 

  • Buck O, Niyogi DK, Townsend CR (2004) Scale-dependence of land use effects on water quality of streams in agricultural catchments. Environ Pollut 130:287–299

    Google Scholar 

  • Canfield DE, Glazer AN, Falkowski PG (2010) The evolution and future of earth’s nitrogen cycle. Science 330:192–196

    Google Scholar 

  • Carpenter SR, Stanley EH, Van der Zanden MJ (2011) State of the World’s Freshwater Ecosystems: physical, Chemical, and Biological Changes. Annu Rev Environ Resour 36:75–99

    Google Scholar 

  • Carter RWG (ed) (2013) Coastal environments: an introduction to the physical, ecological, and cultural systems of coastlines. Academic Press Ltd, London, p 617 (ISBN: 9780080502144)

    Google Scholar 

  • Clesceri LS, Greenberg AE, Eaton AD (eds) (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, p 996

    Google Scholar 

  • Cortelezzi A, Rodríguez Capítulo A, Gómez N (2010) Descriptores bióticos basados en macroinvertebrados para la evaluación de las alteraciones del hábitat en arroyos urbanos: un aporte para la gestión integral de sistemas lóticos de la llanura pampeana. En: I Congreso Internacional de Hidrología de Llanuras - Hacia la gestión integral de los recursos hídricos en zonas de llanura, Mar del Plata (Buenos Aires, Argentina), 633–640

  • Cortelezzi A, Sierra MV, Gómez N, Marinelli C, Rodríguez Capítulo A (2012) Macrophytes, epipelic biofilm, and invertebrates as biotic indicators of physical hábitat degradation of lowland streams (Argentina). Environ Monit Assess 185:5801–5815

    Google Scholar 

  • Cortelezzi A, Barranquero RS, Cepeda R, Marinelli C (2017) Urbanización: ¿límite a la integridad ecológica de un arroyo pampeano?. En: IX Congreso Argentino de Ecología y Manejo de Ecosistemas Acuáticos Pampeanos, 22–24 de noviembre de 2017, La Plata (Buenos Aires, Argentina)

  • Dawidek J, Ferencz B (2012) Hydrological processes in the riverine systems, the origin and classification of floodplain lakes. Ekológia (Bratislava) 31(3):331–340

    Google Scholar 

  • Dodds WK, Oakes RM (2006) Control of nutrients across a prairie stream watershed: land use and riparian cover effects. Environ Manage 37:634–646

    Google Scholar 

  • Döll P, Zhang J (2010) Impact of climate change on freshwater ecosystems: a global-scale analysis of ecologically relevant river flow alterations. Hydrol Earth Syst Sci 14:783–799

    Google Scholar 

  • Duval ME, Galantini JA, Iglesias JO, Canelo S, Martínez JM, Wall L (2011) Analysis of organic fractions as indicators of soil quality under natural and cultivated systems. Soil Tillage Res 131:11–19

    Google Scholar 

  • Eberlein K, Kattner G (1987) Automatic method for determination of orthophosphate and total dissolved phosphorus in the marine environment. Fresenius’ Zeitschrift für Analytische Chemie 326(4):354–357

    Google Scholar 

  • Feijoó CJ, Lombardo RJ (2007) Baseline water quality and macrophyte assemblages in Pampean streams: a regional approach. Water Res 41:1399–1410

    Google Scholar 

  • Feijoó CJ, Giorgi A, Ferreiro N (2011) Phosphorus uptake in a macrophyte-rich pampean stream. Limnologica 41:285–289

    Google Scholar 

  • Fernández Honaine M, Osterrieth ML, Zucol AF (2012) Plant communities and soil phytolith assemblages relationship in native grasslands from southeastern Buenos Aires province, Argentina. CATENA 76:89–96

    Google Scholar 

  • Filoso S, Martinelli LA, Williams MR, Lara LB, Krusche A, Ballester MV, Victoria R, De Camargo PB (2003) Land use and nitrogen export in the Piracicaba River basin, Southeast Brazil. Biogeochemistry 65:275–294

    Google Scholar 

  • Forsberg BR, Devol AH, Richey JE, Martinelli LA, dos Santos H (1988) Factors controlling nutrient concentrations in Amazon floodplain lakes. Limnol Oceanogr 33(1):41–56

    Google Scholar 

  • Frenguelli J (1956) Rasgos generales de la hidrografía de la Provincia de Buenos Aires. Ministerio de Obras Públicas de la Provincia de Buenos Aires 62:1–19

    Google Scholar 

  • Gabellone NA, Solari LC, Claps MC (2001) Planktonic and physico–chemical dynamics of a markedly fluctuating backwater pond associated with a lowland river (Salado River, Buenos Aires, Argentina. Lakes Reserv Res Manag 6:133–142

    Google Scholar 

  • Galindo G, Sainato C, Dapeña C, Fernández-Turiel JL, Gimeno D, Pomposiello MC, Panarello H (2002) Natural and anthropogenic features influencing water quality in NE Buenos Aires, Argentina. In: Bocanegra E, Martínez D, Massone H (eds) Groundwater and human development, pp 300–309 (ISBN: 987-544-063-9)

  • Gallardo B, Gascón S, Quintana X, Comín FA (2011) How to choose a biodiversity indicator—redundancy and complementarity of biodiversity metrics in a freshwater ecosystem. Ecol Ind 11:1177–1184

    Google Scholar 

  • Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. Bioscience 53(4):341–356

    Google Scholar 

  • Gilbert M, Needoba J, Koch C, Barnard A, Baptista A (2013) Nutrient loading and transformations in the Columbia river estuary determined by high-resolution In Situ Sensors. Estuaries Coasts 36(4):708–727

    Google Scholar 

  • Gove NE, Edwards RT, Conquest LL (2001) Effects of scale on land use and water quality relationships: a longitudinal basin-wide perspective. J N Am Water Res Assoc 37:1721–1734

    Google Scholar 

  • Grasshoff K, Kremling K, Ehrhardt M (eds) (1999) Methods of seawater analysis. Wiley, Weinheim, p 634 (ISBN 9783527295890)

    Google Scholar 

  • Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 45(17):293–296

    Google Scholar 

  • Hafezparast M, Araghinejad S, Fatemi SE, Bressers H (2013) A conceptual rainfall-runoff model using the auto calibrated NAM models in the Sarisoo River. Hydrol Curr Res 4:148–153

    Google Scholar 

  • Hansson D, Eriksson C, Omstedt A, Chen D (2011) Reconstruction of river runoff to the Baltic Sea, AD 1500–1995. Int J Clim 31:696–703

    Google Scholar 

  • Hartz TK (2006) Vegetable production best management practices to minimize nutrients loss. Hort Technol 16(3):398–403

    Google Scholar 

  • Heffernan JB, Cohen MJ (2010) Direct and indirect coupling of primary production and diel nitrate dynamics in a subtropical spring-fed river. Limnol Oceanogr 55(2):677–688

    Google Scholar 

  • Hellawell JM (2012) Biological indicators of freshwater pollution and environmental management. Springer Science and Business Media, Heidelberg, p 546 (ISBN: 978-94-009-4315-5)

    Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins: hydro-physical approach to quantitative morphology. Bulle Geol Soc Am 56:275–370

    Google Scholar 

  • Howarth R, Chan F, Conley DJ, Garnier J, Doney SC, Marino R, Billen G (2011) Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Front Ecol Environ 9(1):18–26

    Google Scholar 

  • Karr JR (1999) Defining and measuring river health. Freshw Biol 41:221–234

    Google Scholar 

  • Kaushal SS, Likens GE, Jaworski NA, Pace ML, Sides AM, Seekell D, Belt KT, Secor DH, Wingate RL (2010) Rising stream and river temperatures in the United States. Front Ecol Environ 8(9):461–466

    Google Scholar 

  • Kopprio GA, Freije RH, Strussmann CA, Kattner G, Hoffmeyer MS, Popovich CA, Lara RJ (2010) Vulnerability of pejerrey Odontesthes bonariensis populations to climate change in pampean lakes of Argentina. J Fish Biol 77:1856–1866

    Google Scholar 

  • Kuzyakov Y, Gavrichkova O (2010) Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Glob Change Biol 16:3386–3406

    Google Scholar 

  • Landriscini MR, Lázzari MA, Galantini JA (2010) Fertilización nitrogenada y balance de nutrientes en cebada cervecera. Ciencias del Suelo 28(2):201–214

    Google Scholar 

  • Laterra P, Orúe ME, Booman G (2012) Spatial complexity and ecosystem services in rural landscapes. Agric Ecosyst Environ 154:56–67

    Google Scholar 

  • Latimer JS, Charpentier MA (2010) Nitrogen inputs to seventy-four southern New England estuaries: application of a watershed nitrogen loading model. Estuar Coast Shelf Sci 89:125–136

    Google Scholar 

  • Lillebø AI, Neto JM, Martins I, Verdelhos T, Leston S, Cardoso PG, Ferreira SM, Marques JC, Pardal MA (2005) Management of a shallow temperate estuary to control eutrophication: the effect of hydrodynamics on the system’s nutrient loading. Estuar Coast Shelf Sci 65:697–707

    Google Scholar 

  • Liu D, Chen G, Li Y, Gu B (2012) Global pattern of carbon stable isotopes of suspended particulate organic matter in lakes. Limnology 13(2):253–260

    Google Scholar 

  • Losinno BL, Heredia OS, Sainato CM, Giuffré L, Galindo G (2002) Impacto potencial del riego con agua subterránea sobre los suelos en la cuenca del arroyo Pergamino, Provincia de Buenos Aires, Argentina. Ecología Austral 12:55–63

    Google Scholar 

  • Macedo DR, Hughes RM, Ligeiro R, Ferreira WR, Castro MA, Junqueira NT, Oliveira DR, Firmiano KR, Kaufmann PR, Pompeu PS, Callisto M (2014) The relative influence of catchment and site variables on fish and macroinvertebrate richness in Cerrado biome streams. Landscape Ecol 29:1001–1016

    Google Scholar 

  • Malik A, Verma P, Singh AK, Singh KP (2011) Distribution of polycyclic aromatic hydrocarbons in water and bed sediments of the Gomti River, India. Environ Monit Assess 172:529–545

    Google Scholar 

  • Manuel-Navarrete D, Gallopín GC, Blanco M, Díaz-Zorita M, Ferraro DO, Herzer H, Laterra P, Murmis MR, Podestá GP, Rabinovich J, Satorre EH, Torres F, Viglizzo EF (2009) Multi-causal and integrated assessment of sustainability: the case of agriculturization in the Argentine Pampas. Environ Dev Sustain 11:621–638

    Google Scholar 

  • Marcomini SC, López RA (1999) Alteración de la dinámica costera por efecto de la explotación de arena de playa, partidos de General Alvarado y Lobería, provincia de Buenos Aires. Revista de la Asociación Argentina de Sedimentología 6(1–2):1–18

    Google Scholar 

  • Massone HE, Martínez DE, Cionchi JL, Bocanegra E (1998) Suburban areas in developing countries and their relationship to groundwater pollution: a case study of Mar del Plata, Argentina. Environ Manag 22(2):245–254

    Google Scholar 

  • Matteucci SD (2012) Human-natural system sustainability in Bbuenos aires province, Argentina. J Geogr Geol 4(4):76–91

    Google Scholar 

  • Meng W, Zhang N, Zhang Y, Zheng B (2009) Integrated assessment of river health based on water quality, aquatic life and physical hábitat. J Environ Sci 21:1017–1027

    Google Scholar 

  • Milliman JD, Farsworth KL (eds) (2011) River discharge to the coastal ocean: a global synthesis. Cambridge Univ.Press, Cambridge, p 393 (ISBN: 978-0-521-87987-3)

    Google Scholar 

  • Miretzky P, Conzonno V, Fernández Cirelli A (2000) Hydrochemistry of pampasic ponds in the lower stream bed of Salado River drainage basin, Argentina. Environ Geol 39(8):951–956

    Google Scholar 

  • Morello J, Buzai GD, Baxendale CA, Rodríguez AF, Matteucci SD, Godagnone RE, Casas RR (2000) Urbanization and the consumption of fertile land and other ecological changes: the case of Buenos Aires. Environ Urban 12(2):119–131

    Google Scholar 

  • Naiman RJ, Dudgeon D (2011) Global alteration of freshwaters: influences on human and environmental well-being. Ecol Res 26(5):865–873

    Google Scholar 

  • Naveh Z, Lieberman AS (2013) Landscape ecology: theory and application. Springer-Verlag Interntl.Ed, New York, p 360

    Google Scholar 

  • Niemelä J, Saarela S-R, Söderman T, Kopperoinen L, Pelkonen VY, Väre S, Kotze DJ (2010) Using the ecosystem services approach for better planning and conservation of urban green spaces: a Finland case study. Biodivers Conserv 19(11):3225–3243

    Google Scholar 

  • Norris RH, Thomas MC (1999) What is river health? Freshw Biol 41:197–209

    Google Scholar 

  • Park S-R, Lee H-J, Lee S-W, Hwan S-J, Byeon M-S, Joo G-J, Kong K-S, Kim M-C (2011) Relationships between land use and multi-dimensional characteristics of streams and rivers at two different scales. Int J Limnol 47:107–116

    Google Scholar 

  • Rabalais NN (2002) Nitrogen in aquatic ecosystems. Ambio 31(2):102–112

    Google Scholar 

  • Richards FA, Kletsch RA (1964) The spectrophotometric determination of ammonia and labile amino compounds in fresh and sea water by oxidation to nitrite. Reprinted from Miyake Y, Koyama T (eds) Recent researches in the fields of hydrosphere, atmosphere and nuclear geochemistry, Tokyo (Japan), Maruzen, pp 65–81

  • Ringuelet RA (1962) Rasgos principales de las lagunas pampeanas con criterio bioecológico. Anales CIC 3:316–337

    Google Scholar 

  • Rodríguez Capítulo A, Gómez N, Giorgi A, Feijoó C (2010) Global changes in pampean lowland streams (Argentina): implications for biodiversity and functioning. Hydrobiologia 657:53–70

    Google Scholar 

  • Rojo A, Laurencena P, Kruse E, Deluchi M (2008) Particularidades de la relación aguas subterráneas-aguas superficiales en un sector del noreste de la provincia de Buenos Aires, Argentina. In: IX Congreso Latinoamericano de Hidrología Subterránea y Expo Agua 2008, Guayaquil (Ecuador), pp 7

  • Ronco A, Peluso L, Jurado M, Rossini GB, Salibian A (2008) Screening of sediment pollution in tributaries from the southwestern coast of the Río de la Plata estuary. Latin Am J of Sedimentol Basin Anal 15(1):67–75

    Google Scholar 

  • Ruiz de Galarreta A, Banda Noriega R, Najle R, Rodríguez C, Barranquero R, Díaz A, Miguel E, Pereyra M, Priano M (2013) Análisis de la calidad del agua del arroyo Langueyú, Tandil, Buenos Aires. Revista Estudios Ambientales 1(1):2–28

    Google Scholar 

  • Sabater S (2008) Alterations of the global water cycles and their effects on river structure, function and services. Freshw Rev 1:75–88

    Google Scholar 

  • Sayago JM, Collantes MM, Karlson A, Sanabria J (2001) Genesis and distribution of the late Pleistocene and Holocene loess from Argentina: a regional aproximation. Quat Int 76/77, 247-257

    Google Scholar 

  • Senisterra GE, Gaspari FJ, Delgado MI (2015) Zonificación de la vulnerabilidad ambiental en una cuenca serrana rural, Argentina. Revista Estudios Ambientales 3(1):38–58

    Google Scholar 

  • Sliva L, Williams DD (2001) Buffer zone versus whole catchment approaches to studying land use impact on river water quality. Water Res 35(14):3462–3472

    Google Scholar 

  • Sokal RR, Rohlf FJ (2009) Introduction to biostatistics, 2nd edn. Dover Publications Inc, Minesota, p 374 . ISBN 13: 978-0-486-46961-4 (13: 978-0-486-46961-4)

    Google Scholar 

  • Strahler AN (1964) Quantitative geomorphology of drainage basins and channel networks. In: Chow VT (ed) Handbook of applied hydrology. McGraw – Hill Book Co, New York, pp 39–76 (Section 4)

    Google Scholar 

  • Strickland JD, Parsons TR (1968) Determination of particulate organic carbon. In: Strickland JD, Parsons TR (eds) A practical handbook of seawater analysis. Fisheries Research Board of Canada, Ottawa, pp 207–211 (Bulletin 167)

    Google Scholar 

  • Suzuki KW, Kasai A, Nakayama K, Tanaka M (2012) Year-round accumulation of particulate organic matter in the estuarine turbidity maximum: comparative observations in three macrotidal estuaries (Chikugo, Midori, and Kuma Rivers), southwestern Japan. J Oceanogr 68(3):453–471

    Google Scholar 

  • Syvitski JPM, Vörösmarty CJ, Kettner AJ, Green P (2005) Impact of humans on the flux of Terrestrial Sediment to the Global Coastal Ocean. Science 308:376–380

    Google Scholar 

  • Tang Z, Yang Z, Shen Z, Niu J, Cai Y (2008) Residues of organochlorine pesticides in water and suspended particulate matter from the Yangtze River catchment of Wuhan, China. Environ Monit Assess 137:427–439

    Google Scholar 

  • Technicon® (1973) Technicon AutoAnalyzer II. Industrial Methods 186-72 W/B. Technicon, New York, p 4

    Google Scholar 

  • Tran CP, Bode RW, Smith AJ, Kleppel GS (2010) Land-use proximity as a basis for assessing stream water quality in New York State (USA). Ecol Ind 10:727–733

    Google Scholar 

  • Treguer P, Le Corre P (1975a) Analyse des Sels Nutritifs sur AutoAnalyzer II. Manuel D’Analyse des Sels Nutritifs dans L’Eau de Mer. Université de Bretagne Occidentale, French, p 11

    Google Scholar 

  • Treguer P, Le Corre P (1975b) Analyse des Sels Nutritifs sur AutoAnalyzer II. Methods Richards et Kletsh (Modifiée). Manuel D’Analyse des Sels Nutritifs dans L’Eau de Mer. Université de Bretagne Occidentale, French, pp 50–61

    Google Scholar 

  • Valiela I, Bowen JL (2002) Nitrogen sources to watersheds and estuaries: role of land cover mosaics and losses within watersheds. Environ Pollut 118:239–248

    Google Scholar 

  • Vanni MJ, Renwick WH, Headworth JL, Auch JD, Schaus MH (2001) Dissolved and particulate nutrient flux from three adjacent agricultural watersheds: a five years study. Biogeochemistry 54:85–114

    Google Scholar 

  • Vázquez P, Sacido M, Zulaica L (2012) Transformaciones agroproductivas e indicadores de sustentabilidad en la cuenca del río Quequén Grande (Provincia de Buenos Aires, Argentina), durante los períodos 1988-1998 y 1998-2008. Cuadernos de Geografía 50(1):119–146

    Google Scholar 

  • Vörösmarty CJ, Meybeck M (2004) Responses of continental aquatic systems at the global scale: new paradigms, new methods. In: Kabat P, Claussen M, Dirmeyer PA (eds) Vegetation, Water, Humans and the Climate. Springer-Verlag, Heidelberg, pp 375–413. ISBN 978-3-642-62373-8

    Google Scholar 

  • Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Reidy Liermann C, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 467:555–561

    Google Scholar 

  • Weijters MJ, Janse JH, Alkemade R, Verhoeven JTA (2009) Quantifying the effect of catchment land use and water nutrient concentrations on freshwater river and stream biodiversity. Aquatic Conserv 19:104–112

    Google Scholar 

  • Yamashita Y, Kloeppel BD, Knoepp J, Zausen GL, Jaffe R (2011) Effects of watershed history on dissolved organic matter characteristics in headwater streams. Ecosystems 14:1110–1122

    Google Scholar 

  • Yang Z, Wang Y, Shen Z, Niu J, Tang Z (2009) Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China. J Hazard Mater 166:1186–1194

    Google Scholar 

  • Young RG, Matthaei CD, Townsend CR (2008) Organic matter breakdown and ecosystem metabolism: functional indicators for assessing river ecosystem health. J N Am Benthic Soc 27(3):605–625

    Google Scholar 

  • Zabala ME, Manzano M, Vives L (2015) The origin of groundwater composition in the Pampeano Aquifer underlying the Del Azul Creek basin, Argentina. Sci Total Environ 518(519):168–188

    Google Scholar 

  • Zárate MA (2003) Loess of southern South America. Quatern Sci Rev 22:1987–2006

    Google Scholar 

  • Zárate MA, Blasi A (1993) Late Pleistocene-Holocene eoalian deposits of the Southern Buenos Aires Province, Argentina: a preliminary model. Quatern Int 17:15–20

    Google Scholar 

  • Zou S, Xu W, Zhang R, Tang J, Chen Y, Zhang G (2011) Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: impacts of river discharge and aquaculture activities. Environ Pollut 159(10):2913–2920

    Google Scholar 

Download references

Acknowledgements

This study was developed under the support of Facultad de Ingeniería–Universidad FASTA (Mar del Plata) (Grant 01/2012), Facultad de Ciencias Exactas y Naturales (UNMdP, Mar del Plata) through project EXA666/14, and CONICET through grant PIP D-738. The authors are deeply grateful to Área de Oceanografía Química (Instituto Argentino de Oceanografía, IADO–CONICET/UNS, Bahía Blanca) which have strongly supported the study. We are also indebted to Centro de Información Meteorológica (Servicio Meteorológico Nacional, Argentina) which kindly provided us with the meteorological information within the studied region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia G. De Marco.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Marco, S.G., Marcovecchio, J.E., Vallina, M. et al. The influence of human activities on Pampean streams catchment: a biogeochemical approach. Environ Earth Sci 79, 34 (2020). https://doi.org/10.1007/s12665-019-8676-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-019-8676-3

Keywords

Navigation