Skip to main content
Log in

Spatial distribution of arsenic along groundwater flow path in Chaobai River alluvial–proluvial fan, North China Plain

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The North China Plain has been identified as a potential high-arsenic (As) groundwater area; however, little is known about the As distribution along the groundwater flow path. In this study, 154 groundwater samples were collected from the alluvial–proluvial fan of the Chaobai River, which lies in the north of the North China Plain. The chemical compositions of the samples were analyzed to investigate the spatial distribution of groundwater As and to understand the hydrogeochemical processes that controls As mobilization. Results revealed that groundwater As concentrations were < 1 μg/L in the piedmont recharge zone (zone I) where groundwater flushing was strong, while high (< 1–73 μg/L) in the middle runoff zone (zone II), which features a moderate permeability and hydraulic gradient. In the downward plain zone (zone III) under stagnant hydraulic conditions, groundwater As concentrations reached 111 μg/L. Vertically, high-As groundwater mainly occurred in shallow aquifers (depths < 100 m) in zones II and III. In addition, iron (Fe), manganese (Mn), and NH4+ concentrations showed increasing trends similar to those of As along the groundwater flow path, whereas the NO3 concentrations and redox potential (Eh) showed decreasing trends, which implies a gradual change in the redox conditions. The systematic variation in the As concentrations along the groundwater flow path and the correlations between As and redox sensitive components suggest that groundwater As would occur via the reductive dissolution of Fe/Mn oxides and that slow groundwater flow is an important factor that promotes As enrichment in groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aji K, Tang C, Song X, Kondoh A, Sakura Y, Yu J, Kaneko S (2008) Characteristics of chemistry and stable isotopes in groundwater of Chaobai and Yongding River basin, North China Plain. Hydrol Process 22:63–72. https://doi.org/10.1002/hyp.6640

    Article  Google Scholar 

  • Aziz Z, van Geen A, Stute M, Versteeg R, Horneman A, Zheng Y, Goodbred S, Steckler M, Weinman B, Gavrieli I, Hoque MA, Shamsudduha M, Ahmed KM (2008) Impact of local recharge on arsenic concentrations in shallow aquifers inferred from the electromagnetic conductivity of soils in Araihazar, Bangladesh. Water Resour Res. https://doi.org/10.1029/2007wr006000

    Article  Google Scholar 

  • Beijing Geological Prospecting and Developing Bureau (1991) Regional geology of Beijing Municipality. China Land Press, Beijing

    Google Scholar 

  • Berg M, Stengel C, Trang PTK, Viet PH, Sampson ML, Leng M, Samreth S, Fredericks D (2007) Magnitude of arsenic pollution in the Mekong and Red River Deltas—Cambodia and Vietnam. Sci Total Environ 372:413–425. https://doi.org/10.1016/j.scitotenv.2006.09.010

    Article  Google Scholar 

  • Bian J, Tang J, Zhang L, Ma H, Zhao J (2012) Arsenic distribution and geological factors in the western Jilin province, China. J Geochem Explor 112:347–356. https://doi.org/10.1016/j.gexplo.2011.10.003

    Article  Google Scholar 

  • Borch T, Kretzschmar R, Kappler A, Van Cappellen P, Ginder-Vogel M, Voegelin A, Campbell K (2010) Biogeochemical redox processes and their impact on contaminant dynamics. Environ Sci Technol 44:15–23. https://doi.org/10.1021/es9026248

    Article  Google Scholar 

  • Cao WG, Guo HM, Zhang YL, Ma R, Li YS, Dong QY, Li YJ, Zhao RK (2018) Controls of paleochannels on groundwater arsenic distribution in shallow aquifers of alluvial plain in the Hetao Basin, China. Sci Total Environ 613:958–968. https://doi.org/10.1016/j.scitotenv.2017.09.182

    Article  Google Scholar 

  • Deng YM, Zheng TL, Wang YX, Liu L, Jiang HC, Ma T (2018) Effect of microbially mediated iron mineral transformation on temporal variation of arsenic in the Pleistocene aquifers of the central Yangtze River basin. Sci Total Environ 619:1247–1258. https://doi.org/10.1016/j.scitotenv.2017.11.166

    Article  Google Scholar 

  • Fendorf S, Michael HA, van Geen A (2010) Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science 328:1123–1127

    Article  Google Scholar 

  • Gorny J, Billon G, Lesven L, Dumoulin D, Made B, Noiriel C (2015) Arsenic behavior in river sediments under redox gradient: a review. Sci Total Environ 505:423–434. https://doi.org/10.1016/j.scitotenv.2014.10.011

    Article  Google Scholar 

  • Guo HM, Yang SZ, Tang XH, Li Y, Shen ZL (2008) Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin, Inner Mongolia. Sci Total Environ 393:131–144. https://doi.org/10.1016/j.scitotenv.2007.12.025

    Article  Google Scholar 

  • Guo GX, Hou QL, Xu L, Liu JR, Xin BD (2014a) Delamination and zoning characteristics of quaternary groundwater in Chaobai Alluvial-proluvial Fan, Beijing, based on hydrochemical analysis. Acta Geoscientia Sinica 35:204–210

    Google Scholar 

  • Guo HM, Wen DG, Liu ZY, Jia YF, Guo Q (2014b) A review of high arsenic groundwater in Mainland and Taiwan, China: distribution, characteristics and geochemical processes. Appl Geochem 41:196–217. https://doi.org/10.1016/j.apgeochem.2013.12.016

    Article  Google Scholar 

  • Guo Q, Guo HM, Yang YC, Han SB, Zhang FC (2014c) Hydrogeochemical contrasts between low and high arsenic groundwater and its implications for arsenic mobilization in shallow aquifers of the northern Yinchuan Basin, P.R. China. J Hydrol 518:464–476. https://doi.org/10.1016/j.jhydrol.2014.06.026

    Article  Google Scholar 

  • Guo HM, Zhang D, Ni P, Cao YS, Li FL, Jia YF, Li HL, Wan L, Wang GC (2017) On the scalability of hydrogeochemical factors controlling arsenic mobility in three major inland basins of PR China. Appl Geochem 77:15–23. https://doi.org/10.1016/j.apgeochem.2016.05.006

    Article  Google Scholar 

  • Han SB, Zhang FC, Zhang H, An YH, Wang YS, Wu X, Wang C (2013) Spatial and temporal patterns of groundwater arsenic in shallow and deep groundwater of Yinchuan Plain, China. J Geochem Explor 135:71–78. https://doi.org/10.1016/j.gexplo.2012.11.005

    Article  Google Scholar 

  • Hou QX, Sun JC, Jing JH, Liu CY, Zhang Y, Liu JT, Hua MJ (2018) A regional scale investigation on groundwater arsenic in different types of aquifers in the Pearl River Delta, China. Geofluids. https://doi.org/10.1155/2018/3471295

    Article  Google Scholar 

  • Jia YF, Guo HM, Jiang YX, Wu Y, Zhou YZ (2014) Hydrogeochemical zonation and its implication for arsenic mobilization in deep groundwaters near alluvial fans in the Hetao Basin, Inner Mongolia. J Hydrol 518:410–420. https://doi.org/10.1016/j.jhydrol.2014.02.004

    Article  Google Scholar 

  • Jiang Z, Li P, Wang YH, Li B, Deng YM, Wang YX (2014) Vertical distribution of bacterial populations associated with arsenic mobilization in aquifer sediments from the Hetao plain, Inner Mongolia. Environ Earth Sci 71:311–318. https://doi.org/10.1007/s12665-013-2435-7

    Article  Google Scholar 

  • Jung HB, Zheng Y, Rahman MW, Rahman MM, Ahmed KM (2015) Redox zonation and oscillation in the hyporheic zone of the Ganges-Brahmaputra-Meghna Delta: implications for the fate of groundwater arsenic during discharge. Appl Geochem J Int Assoc Geochem Cosmochem 63:647

    Google Scholar 

  • Kocar BD, Polizzotto ML, Benner SG, Ying SC, Ung M, Ouch K, Samreth S, Suy B, Phan K, Sampson M, Fendorf S (2008) Integrated biogeochemical and hydrologic processes driving arsenic release from shallow sediments to groundwaters of the Mekong delta. Appl Geochem 23:3059–3071. https://doi.org/10.1016/j.apgeochem.2008.06.026

    Article  Google Scholar 

  • Liu CM, Yu JJ, Kendy E (2001) Groundwater exploitation and its impact on the environment in the North China Plain. Water Int 26:265–272

    Article  Google Scholar 

  • Liu YZ, Lin P, Zhou T, Han Z (2010) Quaternary hydrogeological section and groundwater circulation and evolution characteristics in Yongding River and Chaobai River basin of Beijing plain. Beijing Institute of Hydrogeology and Engineering Geology, Beijing

    Google Scholar 

  • Lu Y, He JT, Wang JJ, Liu LY, Zhang XL (2012) Groundwater pollution sources identification and grading in Beijing plain. Chin J Environ Sci 33:1526–1531

    Google Scholar 

  • Ma C, Yang J, Lei M, Chen TB, Xie YF, Li XY, Song B, Liu HL, Wu WY (2012) Assessing the effect of reclaimed water irrigation on groundwater pollution of heavy metals in Beijing. Geogr Res 31:2250–2258

    Google Scholar 

  • McArthur JM, Ravenscroft P, Banerjee DM, Milsom J, Hudson-Edwards KA, Sengupta S, Bristow C, Sarkar A, Tonkin S, Purohit R (2008) How paleosols influence groundwater flow and arsenic pollution: a model from the Bengal Basin and its worldwide implication. Water Resour Res. https://doi.org/10.1029/2007wr006552

    Article  Google Scholar 

  • Nath B, Mallik SB, Stueben D, Chatterjee D, Charlet L (2010) Electrical resistivity investigation of the arsenic affected alluvial aquifers in West Bengal, India: usefulness in identifying the areas of low and high groundwater arsenic. Environ Earth Sci 60:873–884. https://doi.org/10.1007/s12665-009-0224-0

    Article  Google Scholar 

  • Neidhardt H, Berner ZA, Freikowski D, Biswas A, Majumder S, Winter J, Gallert C, Chatterjee D, Norra S (2014) Organic carbon induced mobilization of iron and manganese in a West Bengal aquifer and the muted response of groundwater arsenic concentrations. Chem Geol 367:51–62. https://doi.org/10.1016/j.chemgeo.2013.12.021

    Article  Google Scholar 

  • Nordstrom DK (2002) Public health—Worldwide occurrences of arsenic in ground water. Science 296:2143–2145. https://doi.org/10.1126/science.1072375

    Article  Google Scholar 

  • Postma D, Larsen F, Hue NTM, Duc MT, Viet PH, Nhan PQ, Jessen S (2007) Arsenic in groundwater of the Red River floodplain, Vietnam: controlling geochemical processes and reactive transport modeling. Geochim Cosmochim Acta 71:5054–5071. https://doi.org/10.1016/j.gca.2007.08.020

    Article  Google Scholar 

  • Rodriguez-Lado L, Sun G, Berg M, Zhang Q, Xue H, Zheng Q, Johnson CA (2013) Groundwater arsenic contamination throughout China. Science 341:866–868. https://doi.org/10.1126/science.1237484

    Article  Google Scholar 

  • Rowland H, Polya D, Lloyd J, Pancost R (2006) Characterisation of organic matter in a shallow, reducing, arsenic-rich aquifer, West Bengal. Org Geochem 37:1101–1114

    Article  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568. https://doi.org/10.1016/s0883-2927(02)00018-5

    Article  Google Scholar 

  • Smith AH, Lopipero PA, Bates MN, Steinmaus CM (2002) Public health—Arsenic epidemiology and drinking water standards. Science 296:2145–2146. https://doi.org/10.1126/science.1072896

    Article  Google Scholar 

  • Stute M, Zheng Y, Schlosser P, Horneman A, Dhar RK, Datta S, Hoque MA, Seddique AA, Shamsudduha M, Ahmed KM, van Geen A (2007) Hydrological control of As concentrations in Bangladesh groundwater. Water Resour Res. https://doi.org/10.1029/2005wr004499

    Article  Google Scholar 

  • van Geen A, Zheng Y, Goodbred S Jr, Horneman A, Aziz Z, Cheng Z, Stute M, Mailloux B, Weinman B, Hoque MA, Seddique AA, Hossain MS, Chowdhury SH, Ahmed KM (2008) Flushing history as a hydrogeological control on the regional distribution of arsenic in shallow groundwater of the Bengal Basin. Environ Sci Technol 42:2283–2288. https://doi.org/10.1021/es702316k

    Article  Google Scholar 

  • Wang Y, Jiao JJ, Cherry JA (2012) Occurrence and geochemical behavior of arsenic in a coastal aquifer-aquitard system of the Pearl River Delta, China. Sci Total Environ 427:286–297. https://doi.org/10.1016/j.scitotenv.2012.04.006

    Article  Google Scholar 

  • Wang Z, Guo HM, Xiu W, Wang J, Shen MM (2018) High arsenic groundwater in the Guide basin, northwestern China: distribution and genesis mechanisms. Sci Total Environ 640–641:194–206. https://doi.org/10.1016/j.scitotenv.2018.05.255

    Article  Google Scholar 

  • WHO (2011) Guideline for drinking water quality, 4th edn. World Health Organization, Singapore, Geneva

    Google Scholar 

  • Wu C, Xu QH, Zhang XQ, Ma YH (1996) Palaeochannels on the North China Plain: types and distributions. Geomorphology 18:5–14

    Article  Google Scholar 

  • Xie ZH, Chen ZH, Wang XJ, Xing GZ, Liu M, Xu MJ, Zhang Y (2007) Report on the investigation and evaluation of groundwater sustainable utiliza tion in North China Plain. Institute of Hydrogeology and Environmental Geology. Chinese Academy of Geological Sciences

  • Xie XJ, Ellis A, Wang YX, Xie ZM, Duan MY, So CL (2009a) Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China. Sci Total Environ 407:3823–3835. https://doi.org/10.1016/j.scitotenv.2009.01.041

    Article  Google Scholar 

  • Xie XJ, Wang YX, Duan MY, Liu HQ (2009b) Sediment geochemistry and arsenic mobilization in shallow aquifers of the Datong basin, northern China. Environ Geochem Health 31:493–502. https://doi.org/10.1007/s10653-008-9204-7

    Article  Google Scholar 

  • Xing LN, Guo HM, Zhan YH (2013) Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain. J Asian Earth Sci 70–71:250–264. https://doi.org/10.1016/j.jseaes.2013.03.017

    Article  Google Scholar 

  • Yadav IC, Devi NL, Singh S (2015) Spatial and temporal variation in arsenic in the groundwater of upstream of Ganges River Basin, Nepal. Environ Earth Sci 73:1265–1279. https://doi.org/10.1007/s12665-014-3480-6

    Article  Google Scholar 

  • Zhang AJ, Ye C, Li Y, Xie ZH (2008) Groundwater in Beijing. China Land Press, Beijing

    Google Scholar 

  • Zhang YL, Cao WG, Wang WZ, Dong QY (2013) Distribution of groundwater arsenic and hydraulic gradient along the shallow groundwater flow-path in Hetao Plain, Northern China. J Geochem Explor 135:31–39. https://doi.org/10.1016/j.gexplo.2012.12.004

    Article  Google Scholar 

  • Zhang JW, Ma T, Feng L, Yan YN, Abass OK, Wang ZQ, Cai HW (2017) Arsenic behavior in different biogeochemical zonations approximately along the groundwater flow path in Datong Basin, northern China. Sci Total Environ 584:458–468. https://doi.org/10.1016/j.scitotenv.2017.01.029

    Article  Google Scholar 

  • Zhu W, Su XS, Tang W, Cai H (2015) Fluorine and arsenic contents in groundwater and their hydrochemical impact factors in Songnen Plain. South-to-North Water Transf Water Sci Technol 13:553–556

    Google Scholar 

Download references

Acknowledgements

The study is supported by the Program of China Geological Survey (Grant No. 1212011121173) and the National Natural Science Foundation of China (Grant No. 41672239) and the National Science and Technology Major Project (Grant No. 2016ZX05040-002-003). The authors would like to thank Professor Huaming Guo for his helpful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honghan Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2337 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhi, C., Chen, H., Li, P. et al. Spatial distribution of arsenic along groundwater flow path in Chaobai River alluvial–proluvial fan, North China Plain. Environ Earth Sci 78, 259 (2019). https://doi.org/10.1007/s12665-019-8260-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-019-8260-x

Keywords

Navigation