Skip to main content
Log in

A phenomenological modelling of rocks based on the influence of damage initiation

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

It is recognized that the stress-induced damage impacts the progressive failure behavior of rocks. A phenomenological model for the compressive failure of rocks is thus presented in this study. The model addresses the progressive growth of damage that leads to the strength weakening on a macroscopic scale. Considering dramatic difference between uniaxial compression and tension strengths for rocks, the admitted Mises–Schleiche Drucker–Prager strength criterion is adopted to characterize the damage initiation. On this basis, a two-parameter Weibull-type probability function is used to define the strength distribution of representative volume elements, followed by the use of damage variable for addressing the accumulated probability of failure. The proposed damage variable essentially characterizes both the critical stress level of damage initiation and progressive damage evolution law. Detailed comparisons have been carried out between the predictions and experimental observations, and issues related to the damage evolution are particularly addressed. In addition, the results further validate the proposed model considering damage initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

\({\sigma _{\text{1}}},{\sigma _{\text{2}}},{\sigma _{\text{3}}}\) :

Major, intermediate, and minor apparent principal stresses, respectively

\(\sigma _{1}^{*},\sigma _{2}^{*},\sigma _{3}^{*}\) :

Major, intermediate, and minor net principal stresses, respectively

\({\sigma _{{\text{1}},{\text{p}}}}\) :

Maximum principal stress at the peak point

\({\varepsilon _{\text{1}}},{\varepsilon _{\text{2}}},{\varepsilon _{\text{3}}}\) :

Major, intermediate, and minor apparent principal strains, respectively

\({\varepsilon _{{\text{1}},{\text{p}}}}\) :

Maximum principal axial strain at the peak point

\(A\) :

An empirical constant

\({\sigma _{\text{c}}}\) :

Uniaxial compression strength

\({\sigma _{{\text{cd}}}}\) :

An empirical constant

\({\sigma _{\text{t}}}\) :

Uniaxial tension strength

\({C_0}\) :

Uniaxial compression strength

\(\left| {{T_0}} \right|\) :

Uniaxial tension strength

\(D\) :

Damage variable

\(E\) :

Elasticity modulus of rocks

\({F^*}\) :

A fictitious loading function

\(\nu\) :

Poisson’s ratio of rocks

\(\varphi ,c\) :

Cohesion and angles of internal friction of rocks, respectively

\({F_0},m\) :

Statistical parameters for Weibull distribution

\({I_{\text{T}}}\) :

Transition condition for the MSDP criterion

\({I_{\text{1}}}\) :

First invariant of the stress tensor

\({J_{\text{2}}}\) :

Second invariant of the deviatoric stress tensor

\({J_{\text{3}}}\) :

Third invariant of the deviatoric stress tensor

\(a,k\) :

Material constants for Drucker–Prager criterion

\(a\) :

Fitting constant

\(b\) :

Fitting constant

\({k_0}\) :

Material constant

\({\text{p}}\) :

Particular values at peak point of stress–strain curves

*:

Net stress

References

  • Aubertin M, Li L (2004) A porosity-dependent inelastic criterion for engineering materials. Int J Plast 20(12):2179–2208

    Article  Google Scholar 

  • Aubertin M, Simon R (1997) A damage initiation criterion for low porosity rocks. Int J Rock Mech Min Sci 34(3–4):17

    Google Scholar 

  • Aubertin M, Li L, Simon R, Khalfi S (1999) Formulation and application of a short-term strength criterion for isotropic rocks. Can Geotech J 36(5):947–960

    Article  Google Scholar 

  • Aubertin M, Li L, Simon R (2000) A multiaxial criterion for short term and long term strength of rock media. Int J Rock Mech Min Sci 37:1169–1193

    Article  Google Scholar 

  • Bui QV (2010) Initiation of damage with implicit gradient-enhanced damage models. Int J Solids Struct 47:2425–2435

    Article  Google Scholar 

  • Cai M, Kaiser PK, Tasaka Y, Maejima T, Morioka, Minami M H (2004) Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations. Int J Rock Mech Min Sci 41:833–847

    Article  Google Scholar 

  • Cao WG, Zhang S (2005) Study on random statistical method of damage for softening hardening constitutive model of rock. In: Proceedings of the 2nd China–Japan geotechnical symposium, Shanghai, China, October

  • Cao WG, Fang ZL, Tang XJ (1998) A study of statistical constitutive model for softening and damage rocks. Chin J Rock Mechan Eng 17(6):628–633

    Google Scholar 

  • Cao WG, Zhao H, Li X, Zhang YJ (2010) Statistical damage model with strain softening and hardening for rocks under the influence of voids and volume changes. Can Geotech J 47(8):857–871

    Article  Google Scholar 

  • Castro LAM, Grabinsky MW, McCreath DR (1997) Damage initiation through extension fracturing in a moderately jointed brittle rock mass. Int J Rock Mech Min Sci 34:3–4

    Article  Google Scholar 

  • Diederichs MS, Kaiser PK, Eberhardt E (2004) Damage initiation and propagation in hard rock during tunneling and the influence of near-face stress rotation. Int J Rock Mech Min Sci 41:785–812

    Article  Google Scholar 

  • Huang RQ, Wu LZ, He Q, Li JH (2017) Stress intensity factor analysis and the stability of overhanging rock. Rock Mech Rock Eng 50(8):2135–2142

    Article  Google Scholar 

  • Krajcinovic D (1996) Damage mechanics. North-Holland Press, Amsterdam

    Google Scholar 

  • Krajcinovic D, Silva MAD (1982) Statistical aspects of the continuous damage theory. Int J Solids Struct 18(7):551–562

    Article  Google Scholar 

  • Li G, Tang CA (2015) A statistical meso-damage mechanical method for modeling trans-scale progressive failure process of rock. Int J Rock Mech Min Sci 74:133–150

    Article  Google Scholar 

  • Li L, Aubertin M, Simon R, Bussière B (2005) Formulation and application of a general inelastic locus for geomaterials with variable porosity. Can Geotech J 42(2):601–623

    Article  Google Scholar 

  • Li X, Cao WG, Su YH (2012) A statistical damage constitutive model for softening behavior of rocks. Eng Geol 143/144:1–17

    Article  Google Scholar 

  • Martin CD (1997) Seventeenth Canadian geotechnical colloquium: the effect of cohesion loss and stress path on brittle rock strength. Can Geotech J 34(5):698–725

    Article  Google Scholar 

  • Martin CD, Chandler NA (1994) The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Geomech 31(6):643–659

    Article  Google Scholar 

  • Millard A, Massmann J, Rejeb A, Uehara S (2009) Study of the initiation and propagation of excavation damaged zones around openings in argillaceous rock. Environ Geol 57(6):1325–1335

    Article  Google Scholar 

  • Mohammsdi M, Taxakoli H (2015) Comparing the generalized Hoek–Brown and Mohr–Coulomb failure criteria for stress analysis on the rocks failure plane. Geomech Eng 9(1):115–124

    Article  Google Scholar 

  • Okubo S, Fukui K (1996) Complete stress–strain curves for various rock types in uniaxial tension. Int J Rock Mech Min Geomech 33(6):549–556

    Article  Google Scholar 

  • Pestman BJ, van Munster JG (1996) An acoustic emission study of damage development and stress memory effects in sandstone. Int J Rock Mech Min Geomech 33(6):585–593

    Article  Google Scholar 

  • Scholz CH (1968) Microfracturing and the inelastic deformation of rock in compression. J Geophys Res 73(4):1417–1432

    Article  Google Scholar 

  • Simone A, Askes H, Sluys LJ (2004) Incorrect initiation and propagation of failure in nonlocal and gradient-enhanced media. Int J Solids Struct 41:351–363

    Article  Google Scholar 

  • Wu LZ, Li B, Huang RQ, Wang QZ (2016) Study on Mode I–II hybrid fracture criteria for the stability analysis of sliding overhanging rock. Eng Geol 209:187–195

    Article  Google Scholar 

  • Wu LZ, Li B, Huang RQ, Sun P (2017) Experimental study and modeling of shear rheology in sandstone with non-persistent joints. Eng Geol 222:201–211

    Article  Google Scholar 

  • Wu LZ, Shao GQ, Huang RQ, He Q (2018) Overhanging rock: theoretical, physical and numerical modeling. Rock Mech Rock Eng 51:3585–3597

    Article  Google Scholar 

  • Yang SQ (2015) An experimental study on fracture coalescence characteristics of brittle sandstone specimens combined various flaws. Geomech Eng 8(4):541–557

    Article  Google Scholar 

  • Yang SQ, Jiang YZ, Xu WY, Chen XQ (2008) Experimental investigation on strength and failure behavior of pre-cracked marble under conventional triaxial compression. Int J Solids Struct 45:4796–4819

    Article  Google Scholar 

  • Yumlu M, Ozbay MU (1995) Study of the behaviour of brittle rocks under plane strain and triaxial loading conditions. Int J Rock Mech Min Geomech 32(7):725–733

    Article  Google Scholar 

  • Zhang P, Li N, Li XB, Nordlund E (2009) Compressive failure model for brittle rocks by shear faulting and its evolution of strength components. Int J Rock Mech Min Sci 46:830–841

    Article  Google Scholar 

  • Zhao H, Zhang C, Cao W, Zhao M (2016) Statistical meso-damage model for quasi-brittle rocks to account for damage tolerance principle. Environ Earth Sci 75:862

    Article  Google Scholar 

  • Zhao H, Shi C, Zhao M, Li X (2017) Statistical damage constitutive model for rocks considering residual strength. Int J Geomech 17(1):04016033

    Article  Google Scholar 

  • Zhao H, Zhou S, Zhao MH, Shi CJ (2018) Statistical micromechanics-based modeling for low-porosity rocks under conventional triaxial compression. Int J Geomech 18(5):04018019

    Article  Google Scholar 

  • Zhu J, Cheng H, Yao Y (2013) Statistical damage softening model of fractured rock based on SMP failure criterion and its application. Chin J Rock Mech Eng 32(Supp. 2):3160–3168

    Google Scholar 

Download references

Acknowledgements

This work was fully supported by the National Natural Science Foundation of China under contract nos. 51608540 and 51678231, and the Basal Research Fund Support by Hunan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, a number of equations that denote intermediate variables were shown here for derivation requirement with respect to Eq. (23) with the boundary condition of \({\sigma _1}={\sigma _{{\text{1,p}}}}\) and \({\varepsilon _1}={\varepsilon _{{\text{1,p}}}}\). The following expression ensues

$$E(1 - {D_{\text{p}}}) - {\varepsilon _{{\text{1,p}}}}\frac{{\partial D}}{{\partial {\varepsilon _1}}}=0.$$
(33)

Rearranging Eq. (33) gives

$$\frac{{\partial D}}{{\partial {\varepsilon _1}}}=\frac{{1 - {D_{\text{p}}}}}{{{\varepsilon _{{\text{1,p}}}}}}.$$
(34)

In the equation, Dp is calculated using Eq. (26) at the situation of peak point, which reads

$${D_{\text{p}}}=1 - {{({\sigma _{\text{p}}} - 2\nu {\sigma _3})} \mathord{\left/ {\vphantom {{({\sigma _{\text{p}}} - 2\nu {\sigma _3})} {E{\varepsilon _{{\text{1,p}}}}}}} \right. \kern-0pt} {E{\varepsilon _{{\text{1,p}}}}}}.$$
(35)

By inspiring from Eq. (14), the partial differential of the damage variable with respect to the axial strain can be written as

$$\frac{{\partial D}}{{\partial {\varepsilon _1}}}=\frac{{m\exp [ - {{(F_{{\text{p}}}^{*}/{F_0})}^m}]{{(F_{{\text{p}}}^{*}/{F_0})}^m}}}{{F_{{\text{p}}}^{*}}}\frac{{\partial \left\langle {{F^*}} \right\rangle }}{{\partial {\varepsilon _1}}}.$$
(36)

In the equation, \(F_{{\text{p}}}^{*}\) is calculated using Eq. (26) at the situation of peak point, which reads

$$F_{{\text{p}}}^{*}{\text{=}}\frac{{\sqrt 3 }}{3}\left[ {E{\varepsilon _{{\text{1,p}}}}+\frac{{(2\nu - 1){\sigma _3}}}{{1 - {D_{\text{p}}}}} - \sqrt {({\sigma _c} - {\sigma _t})f_{{\text{p}}}^{*}\left[ {E{\varepsilon _{{\text{1,p}}}}+\frac{{2(1+\nu ){\sigma _3}}}{{1 - {D_{\text{p}}}}}} \right]+{\sigma _c}{\sigma _t}} } \right],$$
(37)

with

$$f_{{\text{p}}}^{*}=1+\frac{{3{\alpha ^2}\left\langle {I_{{1,{\text{p}}}}^{*} - I_{{\text{T}}}^{{}}} \right\rangle }}{{{\sigma _{\text{c}}} - {\sigma _{\text{t}}}}},$$
(38)
$$I_{{1,{\text{p}}}}^{*}=E{\varepsilon _{{\text{1,p}}}}+[(2\nu - 1){\sigma _3}]/(1 - {D_{\text{p}}}).$$
(39)

These Eqs. (40) to (48) are shown to describe the solution of \({{\partial {F^*}} \mathord{\left/ {\vphantom {{\partial {F^*}} {\partial {\varepsilon _1}}}} \right. \kern-0pt} {\partial {\varepsilon _1}}}\) involved in Eq. (36):

$$\frac{{\partial \left\langle {{F^*}} \right\rangle }}{{\partial {\varepsilon _1}}}{\text{=}}{N_1}+{N_2}\frac{{\partial D}}{{\partial {\varepsilon _1}}},$$
(40)

with

$${N_1}={B_1} - \frac{{{B_3}{A_1}+{B_4}}}{{{B_6}}}$$
(41)
$${N_2}={B_2} - \frac{{{B_3}{A_2} - {B_5}}}{{{B_6}}}$$
(42)
$${A_1}=3E{\alpha ^2}(1 - {D_{\text{p}}})/({\sigma _{\text{c}}} - {\sigma _{\text{t}}})$$
(43)
$${A_2}=3E{\alpha ^2}{\varepsilon _{{\text{1,p}}}}/({\sigma _{\text{c}}} - {\sigma _{\text{t}}})$$
(44)
$${B_1}=\sqrt 3 /3E$$
(45)
$${B_2}=\frac{{\sqrt 3 (2\nu - 1){\sigma _{\text{3}}}}}{{3{{(1 - {D_{\text{p}}})}^2}}}$$
(46)
$${B_3}=\sqrt 3 ({\sigma _{\text{c}}} - {\sigma _{\text{t}}})\left[ {E{\varepsilon _{{\text{1,p}}}}+\frac{{2(1 - \nu ){\sigma _3}}}{{1 - {D_{\text{p}}}}}} \right]$$
(47)
$${B_4}=\sqrt 3 ({\sigma _{\text{c}}} - {\sigma _{\text{t}}})Ef_{{\text{p}}}^{*}$$
(48)
$${B_5}=\sqrt 3 ({\sigma _{\text{c}}} - {\sigma _{\text{t}}})\frac{{2(1+\nu ){\sigma _3}}}{{{{(1 - {D_{\text{p}}})}^2}}}f_{{\text{p}}}^{*}$$
(49)
$${B_6}=6\sqrt {({\sigma _{\text{c}}} - {\sigma _{\text{t}}})f_{{\text{p}}}^{*}\left[ {E{\varepsilon _{{\text{1,p}}}}+\frac{{2(1+\nu ){\sigma _3}}}{{1 - {D_{\text{p}}}}}} \right]+{\sigma _{\text{c}}}{\sigma _{\text{t}}}} .$$
(50)

Substituting Eqs. (34) and (40) into Eq. (36), Eqs. (28) and (29) in the main paper can be obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Zhou, S. & Zhang, L. A phenomenological modelling of rocks based on the influence of damage initiation. Environ Earth Sci 78, 143 (2019). https://doi.org/10.1007/s12665-019-8172-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-019-8172-9

Keywords

Navigation