Skip to main content
Log in

An improved fracture height containment method: artificial gel-barrier technology and its simulation

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Overgrowths of hydraulic fracture height occur in reservoirs without stress barriers. It may decrease the efficiency of hydraulic fracturing, pose harm to well production, and increase the possibility of groundwater pollution. Hence, fracture height containment methods are recommended to restrain the overgrowths of fracture height. To enhance the effect of artificial barrier technology, it is improved by replacing the sand or the ceramic used for bridging the fracture tips by gel particles. This innovative technology could be named “artificial gel-barrier technology”. Experiments show that the design of artificial gel-barrier technology is more convenient and controllable, since the dilatability and the gelling performance of the selected gels are mainly controlled by salinity. Experiments also show that the break-through pressure of the gel-barrier is much larger than that of the classical barrier. Numerical simulations reveal that the artificial gel-barrier technology is more helpful and efficient than classical barrier technology. This improved technology has been applied to fracturing operations in Tahe oilfield of China; 73% of these operations were more efficient and the performances of these wells were better than those of adjacent wells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahn CH, Dilmore R, Wang JY (2017) Modeling of hydraulic fracture propagation in shale gas reservoirs: a three-dimensional, two-phase model. J Energy Res Technol 139:012903

    Article  Google Scholar 

  • Braunlich FH (1967) Controlling fractures during well treatment. US Patent No. 3,335,797

  • Cai Z, Ofterdinger U (2014) Numerical assessment of potential impacts of hydraulically fractured Bowland Shale on overlying aquifers. Water Resour Res 50(7):6236–6259

    Article  Google Scholar 

  • Chen Z, Liao X, Zhao X, Dou X, Zhu L (2016) A semi-analytical mathematical model for transient pressure behavior of multiple fractured vertical well in coal reservoirs incorporating with diffusion, adsorption, and stress-sensitivity. J Nat Gas Sci Eng 29:570–582

    Article  Google Scholar 

  • Clarkson CR, Ghaderi SM, Kanfar MS, Iwuoha CS, Pedersen PK, Nightingale M, Shevalier M, Mayer B (2016) Estimation of fracture height growth in layered tight/shale gas reservoirs using flowback gas rates and compositions–part ii: field application in a liquid-rich tight gas reservoir. J Nat Gas Sci Eng 39:1031–1049

    Article  Google Scholar 

  • Daneshy AA (1978) Hydraulic fracture propagation in layered formations. Soc Petrol Eng J 18(1):33–41

    Article  Google Scholar 

  • Daneshy AA (2009) Factors controlling the vertical growth of hydraulic fractures. In: SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers. https://doi.org/10.2118/118789-MS

  • Economides MJ, Nolte KG (2006). Reservoir stimulation. Wiley, New York

    Google Scholar 

  • England AH, Green AE (1963) Some two-dimensional punch and crack problems in classical elasticity. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol 59, no 2. Cambridge University Press, Cambridge, pp 489–500

  • Gradshteyn IS, Ryzhik IM (2014) Table of integrals, series, and products. Academic Press, Cambridge

    Google Scholar 

  • Greener MR (1994) Evaluation of height growth controlled fractures with placement of artificial barriers. SPE Eastern Regional Meeting. Society of Petroleum Engineers. https://doi.org/10.2118/29186-MS

  • Gu H, Siebrits E (2008) Effect of formation modulus contrast on hydraulic fracture height containment. SPE Prod Oper 23(2):170–176

    Google Scholar 

  • Hanson ME, Shaffer RJ, Anderson GD (1981) Effects of various parameters on hydraulic fracturing geometry. Soc Petrol Eng J 21(4):435–443

    Article  Google Scholar 

  • Hu Y, Mackay E (2017) Modeling of geochemical reactions occurring in the Gyda field under cold-seawater injection on the basis of produced-water-chemistry data and implications for scale management. SPE Production & Operations 32(4). https://doi.org/10.2118/179911-PA

  • Hu Y, Mackay E, Ishkov O, Strachan A (2016) Predicted and observed evolution of produced-brine compositions and implications for scale management. SPE Prod Oper 31(03):270–279

    Google Scholar 

  • Hu Y, Mackay E, Vazquez O, Ishkov O (2018) Streamline simulation of barium sulfate precipitation occurring within the reservoir coupled with analyses of observed produced-water-chemistry data to aid scale management. SPE Production & Operations 33(1):85–101

    Article  Google Scholar 

  • Khanna A, Kotousov A (2015) Controlling the height of multiple hydraulic fractures in layered media. SPE J 21(1):1–8

    Google Scholar 

  • Li XG, Yi LP, Yang ZZ, Liu CY, Yuan P (2017) A coupling algorithm for simulating multiple hydraulic fracture propagation based on extended finite element method. Environ Earth Sci 76(21):725

    Article  Google Scholar 

  • Lin J, Zhu D (2014) Modeling well performance for fractured horizontal gas wells. J Nat Gas Sci Eng 18:180–193

    Article  Google Scholar 

  • Liu J (2010) Study on fracturing techniques of controlling fracture height in Hailar Basin. Master thesis, Daqing Petroleum Institute, Daqing, China (in Chinese)

  • Morales RH (1989) Microcomputer analysis of hydraulic fracture behavior with a pseudo-three-dimensional simulator. SPE Prod Eng 4(1):69–74

    Article  Google Scholar 

  • Mukherjee H, Paoli BF, McDonald T, Cartaya H, Anderson JA (1995) Successful control of fracture height growth by placement of artificial barrier. SPE Prod Facil 10(2):89–95

    Article  Google Scholar 

  • Ouchi H, Foster JT, Sharma MM (2017) Effect of reservoir heterogeneity on the vertical migration of hydraulic fractures. J Petrol Sci Eng 151:384–408

    Article  Google Scholar 

  • Palmer ID, Carroll HB (1983a) Three-dimensional hydraulic fracture propagation in the presence of stress variations. Soc Petrol Eng J 23(6):870–878

    Article  Google Scholar 

  • Palmer ID, Carroll HB (1983b) Numerical solution for height and elongated hydraulic fractures. In: SPE/DOE Low Permeability Gas Reservoirs Symposium. Society of Petroleum Engineers. https://doi.org/10.2118/11627-MS

  • Peng Y, Li YM, Zhao JZ (2016) A novel approach to simulate the stress and displacement fields induced by hydraulic fractures under arbitrarily distributed inner pressure. J Nat Gas Sci Eng 35:1079–1087

    Article  Google Scholar 

  • Prater RR (1968) Hydraulic fracturing. U.S. Patent No. 3,372,752

  • Sadd MH (2009) Elasticity: theory, applications, and numerics. Academic Press, Cambridge

    Google Scholar 

  • Salah M, Gabry MA, ElSebaee M, Mohamed N (2016) Control of hydraulic fracture height growth above water zone by inducing artificial barrier in Western Desert, Egypt. In: Abu Dhabi International Petroleum Exhibition & Conference. Society of Petroleum Engineers. https://doi.org/10.2118/183040-MS

  • Tada H, Paris PC, Irwin GR (2000) The analysis of cracks handbook. ASME Press, New York

  • Vidic RD, Brantley SL, Vandenbossche JM, Yoxtheimer D, Abad JD (2013) Impact of shale gas development on regional water quality. Science 340(6134):1235009

    Article  Google Scholar 

  • Wang H, Liu H, Wu HA, Zhang GM, Wang XX (2012) A 3D nonlinear fluid-solid coupling model of hydraulic fracturing for multilayered reservoirs. Pet Sci Technol 30(21):2273–2283

    Article  Google Scholar 

  • Wang H, Liu H, Wu HA, Wang XX (2015) A 3D numerical model for studying the effect of interface shear failure on hydraulic fracture height containment. J Petrol Sci Eng 133:280–284

    Article  Google Scholar 

  • Yudin A, Butula K, Novikov Y (2007) A Novel Approach to Fracturing Height Control Enlarges the Candidate Pool in the Ryabchyk Formation of West Siberia’s Mature Oilfields. In: European Formation Damage Conference. Society of Petroleum Engineers. https://doi.org/10.2118/107604-MS

  • Zhang M, Fan XD, Tian W, Mu CG, Wang YL, Lv XY (2009) Study on preparation of a new type of sedimentary fracture height control agent used for underground curing. China Adhes 18(12):17–21. (in Chinese)

    Google Scholar 

  • Zhang L, Shan B, Zhao Y (2017) Production performance laws of vertical wells by volume fracturing in CBM reservoirs. Nat Gas Ind B 4(3):189–196

    Article  Google Scholar 

  • Zhao JZ, Jia H, Pu WF, Liao R (2011) Influences of fracture aperture on the water-shutoff performance of polyethyleneimine cross-linking partially hydrolyzed polyacrylamide gels in hydraulic fractured reservoirs. Energy Fuels 25(6):2616–2624

    Article  Google Scholar 

  • Zhao JZ, Peng Y, Li YM, Xiao WL (2015) Analytical model for simulating and analyzing the influence of interfacial slip on fracture height propagation in shale gas layers. Environ Earth Sci 73(10):5867–5875

    Article  Google Scholar 

  • Zhao JZ, Peng Y, Li YM, Liu ZL, Fu DY (2016) A pseudo 3D fracture propagation model with consideration of vertical flow resistance. J China Univ Petrol 40(1):69–78 (in Chinese)

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Major Program of the National Natural Science Foundation of China (51490653), Sichuan Youth Science and Technology Innovation Research Team Program (2017TD0013), and the China Scholarship Council (201708510130).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Peng or Jinzhou Zhao.

Appendix

Appendix

The expressions of W1, W2, W31, W32 and W33 are

$${W_1}= - \frac{{4\left( {1 - {\upsilon ^2}} \right)}}{E}{\sigma _{{\text{mid}}}}\sqrt {{l^2} - {z^2}} ,$$
$$\begin{aligned} {W_2} & = - \frac{{4{\sigma _{{\text{up}}}}z\left( {1 - {\upsilon ^2}} \right)}}{{E\pi }}\left[ {{\text{ln}}\left( {\sqrt {{l^2} - {{\left( {{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2} - s} \right)}^2}} +\sqrt {{l^2} - {z^2}} } \right) - \ln \sqrt {\left| {{{\left( {{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2} - s} \right)}^2} - {z^2}} \right|} } \right. \\ & \quad - \frac{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2} - s}}{{\left| z \right|}}\left. {{\text{ln}}\left( {\left| {{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2} - s} \right|\sqrt {{l^2} - {z^2}} +\left| z \right|\sqrt {{l^2} - {{\left( {{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2} - s} \right)}^2}} } \right) - \frac{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2} - s}}{{\left| z \right|}}\ln \left( {l\sqrt {\left| {{{\left( {{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2} - s} \right)}^2} - {z^2}} \right|} } \right)} \right] \\ & \quad - \frac{{4{\sigma _{{\text{up}}}}\left( {1 - {\upsilon ^2}} \right)}}{{E\pi }}\left[ {\sqrt {{l^2} - {z^2}} \arccos \frac{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2} - s}}{l} - \left( {{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2} - s} \right)\ln \left( {\sqrt {{l^2} - {{\left( {{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2} - s} \right)}^2}} +\sqrt {{l^2} - {z^2}} } \right)} \right. \\ & \quad +\left( {{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2} - s} \right)\ln \sqrt {\left| {{{\left( {{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2} - s} \right)}^2} - {z^2}} \right|} +\left. {\left| z \right|{\text{ln}}\left( {\left| {{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2} - s} \right|\sqrt {{l^2} - {z^2}} +\left| z \right|\sqrt {{l^2} - {{\left( {{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2} - s} \right)}^2}} } \right) - \left| z \right|{\text{ln}}\left( {l\sqrt {\left| {{{\left( {{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2} - s} \right)}^2} - {z^2}} \right|} } \right)} \right] \\ & \quad +\frac{{4{\sigma _{{\text{low}}}}z\left( {1 - {\upsilon ^2}} \right)}}{{E\pi }}\left[ {{\text{ln}}\left( {\sqrt {{l^2} - {{\left( {{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}+s} \right)}^2}} +\sqrt {{l^2} - {z^2}} } \right) - \ln \sqrt {\left| {{{\left( {{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}+s} \right)}^2} - {z^2}} \right|} } \right. \\ & \quad - \frac{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}+s}}{{\left| z \right|}}{\text{ln}}\left( {\left| {{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}+s} \right|\sqrt {{l^2} - {z^2}} +\left| z \right|\sqrt {{l^2} - {{\left( {{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}+s} \right)}^2}} } \right)\left. {+\frac{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}+s}}{{\left| z \right|}}{\text{ln}}\left( {l\sqrt {\left| {{{\left( {{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}+s} \right)}^2} - {z^2}} \right|} } \right)} \right] \\ & \quad - \frac{{4{\sigma _{{\text{low}}}}\left( {1 - {\upsilon ^2}} \right)}}{{E\pi }}\left[ {\sqrt {{l^2} - {z^2}} \arccos \frac{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}+s}}{l}{\kern 1pt} - \left( {{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}+s} \right){\text{ln}}\left( {\sqrt {{l^2} - {{\left( {{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}+s} \right)}^2}} +\sqrt {{l^2} - {z^2}} } \right)} \right. \\ & \quad +\left( {{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}+s} \right)\ln \sqrt {\left| {{{\left( {{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}+s} \right)}^2} - {z^2}} \right|} +\left. {\left| z \right|\ln \left( {\left| {{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}+s} \right|\sqrt {{l^2} - {z^2}} +\left| z \right|\sqrt {{l^2} - {{\left( {{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}+s} \right)}^2}} } \right) - \left| z \right|{\text{ln}}\left( {l\sqrt {\left| {{{\left( {{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}+s} \right)}^2} - {z^2}} \right|} } \right)} \right] \\ \end{aligned}$$
$$\begin{aligned} {W_{31}} & = - \frac{{4z\left( {1 - {\upsilon ^2}} \right)\left( {{p_{{\text{maxup}}}} - {p_{{\text{fmax}}}}} \right)}}{{E\pi \left( {l+s} \right)}}\left( {l\,{\text{ln}}\left| z \right| - l\,{\text{ln}}\left| {l+\sqrt {{l^2} - {z^2}} } \right|+\frac{\pi }{4}\sqrt {{l^2} - {z^2}} } \right)+\frac{{2{p_{{\text{maxup}}}}\left( {1 - {\upsilon ^2}} \right)\,}}{E}\sqrt {{l^2} - {z^2}} \\ & \quad +\frac{{2\left( {1 - {\upsilon ^2}} \right)\,\left( {{p_{{\text{fmax}}}} - {p_{{\text{maxup}}}}} \right)}}{{E\pi \,\left( {l+s} \right)}}\left[ {{z^2}{\text{ln}}\frac{{\left| z \right|}}{{\left| {l+\sqrt {{l^2} - {z^2}} } \right|}}+\left( {\pi l - l} \right)\sqrt {{l^2} - {z^2}} } \right]+\frac{{4{p_{{\text{maxup}}}}z\left( {1 - {\upsilon ^2}} \right)}}{{E\pi }}\,\left( {{\text{ln}}\left| {l+\sqrt {{l^2} - {z^2}} } \right| - {\text{ln}}\left| z \right|} \right) \\ \end{aligned}$$
$$\begin{aligned} {W_{32}} & =\frac{{4z\left( {1 - {\upsilon ^2}} \right)}}{{E\pi }}\left[ {\frac{{l{p_{{\text{fmax}}}}+s{p_{{\text{maxup}}}}}}{{l+s}}} \right]\left( {\ln \frac{{\left| z \right|\left( {\sqrt {{l^2} - {s^2}} +\sqrt {{l^2} - {z^2}} } \right)}}{{\left| {l+\sqrt {{l^2} - {z^2}} } \right|\sqrt {\left| {{s^2} - {z^2}} \right|} }} - \frac{s}{{\left| z \right|}}\ln \frac{{\left| s \right|\sqrt {{l^2} - {z^2}} +\left| z \right|\sqrt {{l^2} - {s^2}} }}{{l\sqrt {\left| {{s^2} - {z^2}} \right|} }}} \right) \\ & \quad +\frac{{4\left( {1 - {\upsilon ^2}} \right)}}{{E\pi }}\left[ {\frac{{l{p_{{\text{fmax}}}}+s{p_{{\text{maxup}}}}}}{{l+s}}} \right]\left( {\sqrt {{l^2} - {z^2}} \arcsin \frac{s}{l}+s\ln \frac{{\sqrt {{l^2} - {s^2}} +\sqrt {{l^2} - {z^2}} }}{{\sqrt {\left| {{s^2} - {z^2}} \right|} }} - } \right.\left. {\left| z \right|\ln \frac{{\left| s \right|\sqrt {{l^2} - {z^2}} +\left| z \right|\sqrt {{l^2} - {s^2}} }}{{l\sqrt {\left| {{s^2} - {z^2}} \right|} }}} \right) \\ & \quad +\frac{{2\left( {1 - {\upsilon ^2}} \right)\left( {{p_{{\text{fmax}}}} - p{}_{{{\text{maxup}}}}} \right)}}{{E\pi \left( {l+s} \right)}}\left[ {\left( {{s^2} - {z^2}} \right)\ln \left( {\frac{{\sqrt {{l^2} - {s^2}} +\sqrt {{l^2} - {z^2}} }}{{\sqrt {\left| {{s^2} - {z^2}} \right|} }}} \right)} \right.+\left. {\sqrt {{l^2} - {z^2}} \left( {l - \sqrt {{l^2} - {s^2}} } \right)+{z^2}\ln \frac{{\left| {l+\sqrt {{l^2} - {z^2}} } \right|}}{{|z|}}} \right] \\ & \quad - \frac{{2z\left( {1 - {\upsilon ^2}} \right)\left( {{p_{{\text{fmax}}}} - {p_{{\text{maxup}}}}} \right)}}{{E\pi \left( {l+s} \right)}}\left[ {\sqrt {{l^2} - {z^2}} \arcsin \frac{s}{l}+\left( {\frac{{{s^2}}}{{\left| z \right|}} - \left| z \right|} \right)\ln \frac{{\left| s \right|\sqrt {{l^2} - {z^2}} +\left| z \right|\sqrt {{l^2} - {s^2}} }}{{l\sqrt {\left| {{s^2} - {z^2}} \right|} }}} \right] \\ \end{aligned}$$
$$\begin{aligned} {W_{33}} & = - \frac{{4\left( {1 - {\upsilon ^2}} \right){p_{{\text{maxlow}}}}z}}{{E\pi }}\left( {\ln \frac{{\sqrt {{l^2} - {s^2}} +\sqrt {{l^2} - {z^2}} }}{{\sqrt {\left| {{s^2} - {z^2}} \right|} }} - \frac{s}{{\left| z \right|}}\ln \frac{{\left| s \right|\sqrt {{l^2} - {z^2}} +\left| z \right|\sqrt {{l^2} - {s^2}} }}{{l\sqrt {\left| {{s^2} - {z^2}} \right|} }}} \right) \\ & \quad +\frac{{4{p_{{\text{maxlow}}}}\left( {1 - {\upsilon ^2}} \right)}}{{E\pi }}\left[ {\arccos \frac{s}{l}\sqrt {{l^2} - {z^2}} +\left| z \right|\ln \frac{{\left| s \right|\sqrt {{l^2} - {z^2}} +\left| z \right|\sqrt {{l^2} - {s^2}} }}{{l\sqrt {\left| {{s^2} - {z^2}} \right|} }}} \right. - \left. {s\ln \frac{{\sqrt {{l^2} - {s^2}} +\sqrt {{l^2} - {z^2}} }}{{\sqrt {\left| {{s^2} - {z^2}} \right|} }}} \right] \\ & \quad +\frac{{4z\left( {1 - {\upsilon ^2}} \right)\left( {{p_{{\text{fmax}}}} - {p_{{\text{maxlow}}}}} \right)}}{{E\pi \left( {l - s} \right)}}\left[ {\frac{{\left| z \right|}}{2}\ln \frac{{\left| s \right|\sqrt {{l^2} - {z^2}} +\left| z \right|\sqrt {{l^2} - {s^2}} }}{{l\sqrt {\left| {{s^2} - {z^2}} \right|} }}} \right.+\frac{\pi }{4}\sqrt {{l^2} - {z^2}} - \frac{1}{2}\arcsin \frac{s}{l}\sqrt {{l^2} - {z^2}} \\ & \quad - \left( {l - \frac{s}{2}} \right)\left( {\ln \frac{{\sqrt {{l^2} - {s^2}} +\sqrt {{l^2} - {z^2}} }}{{\sqrt {\left| {{s^2} - {z^2}} \right|} }} - \frac{s}{{\left| z \right|}}\ln \frac{{\left| s \right|\sqrt {{l^2} - {z^2}} +\left| z \right|\sqrt {{l^2} - {s^2}} }}{{l\sqrt {\left| {{s^2} - {z^2}} \right|} }}} \right) - \left. {\frac{s}{2}\ln \frac{{\sqrt {{l^2} - {s^2}} +\sqrt {{l^2} - {z^2}} }}{{\sqrt {\left| {{s^2} - {z^2}} \right|} }}} \right] \\ & \quad +\frac{{4\left( {1 - {\upsilon ^2}} \right)\left( {{p_{{\text{fmax}}}} - {p_{{\text{maxlow}}}}} \right)}}{{E\pi \left( {l - s} \right)}}\left[ {\frac{{\pi l\sqrt {{l^2} - {z^2}} }}{2}} \right. - l\left( {s\ln \frac{{\sqrt {{l^2} - {s^2}} +\sqrt {{l^2} - {z^2}} }}{{\sqrt {\left| {{s^2} - {z^2}} \right|} }}} \right. - \left| z \right|\ln \frac{{\left| s \right|\sqrt {{l^2} - {z^2}} +\left| z \right|\sqrt {{l^2} - {s^2}} }}{{l\sqrt {\left| {{s^2} - {z^2}} \right|} }} \\ & \quad +\left. {\sqrt {{l^2} - {z^2}} \arcsin \frac{s}{l}} \right) - \frac{1}{2}\sqrt {\left( {{l^2} - {s^2}} \right)\left( {{l^2} - {z^2}} \right)} +\left. {\left( {{s^2} - {z^2}} \right)\frac{l}{2}\ln \frac{{\sqrt {{l^2} - {s^2}} +\sqrt {{l^2} - {z^2}} }}{{\sqrt {\left| {{s^2} - {z^2}} \right|} }}} \right] \\ \end{aligned}$$

where h is the thickness of pay layer, m; s is the distance between the centers of perforation/pay layer and fracture, m; σmid is the minimum horizontal principal stress at pay layer center, MPa; σup and σlow are the stress differences between the pay layer center and upper/lower layer center, MPa; pfmax, pmaxup and pmaxlow are the fluid pressure at appropriate positions in Fig. 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Peng, Y., Zhao, J. et al. An improved fracture height containment method: artificial gel-barrier technology and its simulation. Environ Earth Sci 77, 324 (2018). https://doi.org/10.1007/s12665-018-7506-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7506-3

Keywords

Navigation