Skip to main content

Advertisement

Log in

Cross-sectoral projections of future land-cover change for the Upper Western Bug River catchment, Ukraine

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Projections of future land-cover (LC) change are challenging because of the multitude of spatial and dynamic drivers involved, such as politics, economics, demographics, and the environment. This paper presents a combined qualitative and quantitative scenario approach for giving consistent projections of urban and rural land-cover change (LCC), considering both the demands of certain LC types, and their allocation. The approach has been implemented in the Upper Western Bug River catchment in Ukraine in the context of integrated water resource management. Special attention is paid to the identification of spatial and dynamic drivers of LCC, the scenario formulation and projection of the identified drivers, and the projections of alternative plausible LCC. The identification of spatial and dynamic drivers is based on the detection of retrospective LCC, statistical analysis of interrelations between LCC and drivers, and expert validation of transition rules. The scenario formulation and projection of the drivers involve storylines with inputs from expert interviews. The creation of future LC change projections followed four steps: suitability maps from retrospective LCC detection, expert validation, the future development of drivers, and the allocation of LCC. Results indicate demographic change and GDP development as dynamic drivers mainly influencing the LCC, as other studies have implied. Furthermore, there are spatial drivers influencing the local allocation such as the regional capital of Lviv, and they are shaped by, for example, environmental laws, distances to roads and settlements, slope, and soil fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source own design

Fig. 2
Fig. 3

Source Schanze et al. (2012)

Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Therefore, the phrase “up to” is used, e.g. 0 to 200 m is presented as “up to 200 m”.

References

  • Alcamo J (2001) Scenarios as tools for international environmental assessment. Environmental Issue Report (24)

  • Alcamo J (2008) Chapter one introduction: the case for scenarios of the environment. In: Alcamo J (ed) Developments in integrated environmental assessment. Elsevier, Amsterdam, pp 1–11

    Google Scholar 

  • Alcamo J, Kreileman GJJ, Krol MS, Zuidema G (1994) Modeling the global society-biosphere-climate system: part 1: model description and testing. Water Air Soil Pollut 76:1–35

    Article  Google Scholar 

  • Bahrenberg G, Giese E, Mevenkamp N, Nipper J (2010) Statistische Methoden in der Geographie—1: Univariate und bivariate Statistik, 5. vollst. neubearb. und korr. Aufl. Borntraeger

  • Baumann M, Kuemmerle T, Elbakidze M et al (2011) Patterns and drivers of post-socialist farmland abandonment in Western Ukraine. Land Use Policy 28:552–562. https://doi.org/10.1016/j.landusepol.2010.11.003

    Article  Google Scholar 

  • Blumensaat F, Wolfram M, Krebs P (2012) Sewer model development under minimum data requirements. Environ Earth Sci 65(5):1427–1437. https://doi.org/10.1007/s12665-011-1146-1

    Article  Google Scholar 

  • Boarnet MG, McLaughlin RB, Carruthers JI (2011) Does state growth management change the pattern of urban growth? Evidence from Florida. Reg Sci Urban Econ 41:236–252. https://doi.org/10.1016/j.regsciurbeco.2010.12.004

    Article  Google Scholar 

  • Bürgi M, Hersperger AM, Schneeberger N (2004) Drivers of landscape change—current and new directions. Landsc Ecol 19:857–868. https://doi.org/10.1007/s10980-004-0245-8

    Article  Google Scholar 

  • Burmeister C, Schanze J (2016) Retrospective analysis of systematic land-cover change in the upper Western Bug River catchment, Ukraine. ACC J 22:7–18. https://doi.org/10.15240/tul/004/2016-1-001

    Article  Google Scholar 

  • Busch G (2006) Future European agricultural landscapes—what can we learn from existing quantitative land use scenario studies? Agric Ecosyst Environ 114:121–140. https://doi.org/10.1016/j.agee.2005.11.007

    Article  Google Scholar 

  • Core Team R (2013) R: A language and environment for statistical computing. Austria, Vienna

    Google Scholar 

  • Ertel A-M, Lupo A, Scheifhacken N et al (2011) Heavy load and high potential: anthropogenic pressures and their impacts on the water quality along a lowland river (Western Bug, Ukraine). Environ Earth Sci 65(5):1459–1473

    Article  Google Scholar 

  • FAO, UNEP (1999) The future of our land. Facing the challenge. Guidelines for integrated planning for sustainable management of land resources. ISBN 92-5-104366-9, URL: http://www.fao.org/docrep/004/x3810e/x3810e00.htm. 28 Dec 2017

  • Goodacre AK, Bonham-Carter GF, Agterberg FP, Wright DF (1993) A statistical analysis of the spatial association of seismicity with drainage patterns and magnetic anomalies in western Quebec. Tectonophysics 217:285–305. https://doi.org/10.1016/0040-1951(93)90011-8

    Article  Google Scholar 

  • Hagemann N, Blumensaat F, Tavares Wahren F et al (2014) The long road to improving the water quality of the Western Bug River (Ukraine)—a multi-scale analysis. J Hydrol 519:2436–2447. https://doi.org/10.1016/j.jhydrol.2014.01.013

    Article  Google Scholar 

  • Helm B (2012) Stream network of the western bug river catchment. Geo-Data, Own Calculations

    Google Scholar 

  • Houet T, Loveland TR, Hubert-Moy L et al (2010) Exploring subtle land use and land cover changes: a framework for future landscape studies. Landsc Ecol 25:249–266. https://doi.org/10.1007/s10980-009-9362-8

    Article  Google Scholar 

  • Hoymann J (2012) Quantifying demand for built-up area. A comparison of approaches and application to regions with stagnating population. J Land Use Sci 7:67–87. https://doi.org/10.1080/1747423X.2010.522600

    Article  Google Scholar 

  • HUSuLO (2000) Holovne Upravlinnia Statystyky u Lvivskiy Oblasti (HUSuLO)—the main department of statistics in Lviv oblast

  • Kosow H, Gassner R (2008) Methoden der Zukunfts- und Szenarioanalyse. Überblick, Bewertung und Auswahlkriterien

    Google Scholar 

  • Kudelia S (2012) The sources of continuity and change of Ukraines incomplete state. Communist Post-Communist Stud 45:417–428. https://doi.org/10.1016/j.postcomstud.2012.06.006

    Article  Google Scholar 

  • Kuzio T (2011) Political culture and democracy. East Eur Polit Soc 25(1):88–113

    Article  Google Scholar 

  • Lakes T, Mueller D, Krueger C (2009) Cropland change in southern Romania: a comparison of logistic regressions and artificial neural networks. Landsc Ecol 24:1195–1206

    Article  Google Scholar 

  • Lambin EF, Turner BL, Geist HJ et al (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Change 11:261–269. https://doi.org/10.1016/S0959-3780(01)00007-3

    Article  Google Scholar 

  • Leser H, Klink H-J (Editor) (1988) Handbuch und Kartieranleitung Geoökologische Karte 1:25.000 (KA GÖK 25). Bearbeitet vom Arbeitskreis Geoökologische Karte und Naturraumpotential. Forschungen zur deutschen Landeskunde 228, Trier

  • Lindquist EJ, D’Annunzio R, Gerrand A, MacDicken K, Achard F, Beuchle R, Brink A, Eva HD, Mayaux P, San-Miguel-Ayanz J, Stibig H-J (2012) Global forest land-use change 1990–2005. Food and Agriculture Organization of the United Nations, European Commission Joint Research Centre, Rome

    Google Scholar 

  • Malek Z, Boerboom L (2015) Participatory scenario development to address potential impacts of land use change: an example from the Italian Alps. Mt Res Dev 35:126–138. https://doi.org/10.1659/MRD-JOURNAL-D-14-00082.1

    Article  Google Scholar 

  • Marks R, Müller M, Leser H, Klink H-J (eds) Anleitung zur Bewertung des Leistungsvermögens des Landschaftshaushaltes. Forschungen zur Deutschen Landeskunde, Band 229, 1992

  • Marsaglia G, Tsang WW, Wang J (2003) Evaluating Kolmogorov’s distribution. J Stat Softw 8:1–4. https://doi.org/10.18637/jss.v008.i18

    Google Scholar 

  • Müller D, Munroe DK (2008) Changing rural landscapes in Albania: cropland abandonment and forest clearing in the postsocialist transition. Ann Assoc Am Geogr 98:855–876. https://doi.org/10.1080/00045600802262323

    Article  Google Scholar 

  • Nakicenovic N, Swart R (eds) (2000) Emissions scenarios. Cambridge University Press, Cambridge

    Google Scholar 

  • Narayanan BG, Walmsley TL (2008) Global Trade, Assistance, and Production: The GTAP 7 Data Base

  • Niehoff D, Fritsch U, Bronstert A (2002) Land-use impacts on storm-runoff generation: scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW-Germany. J Hydrol 267:80–93. https://doi.org/10.1016/S0022-1694(02)00142-7

    Article  Google Scholar 

  • Pahl-Wostl C. (2008). Chapter five participation in building environmental scenarios. In: Developments in integrated environmental assessment. J Alcamo 2:105–22. Environmental futures the practice of environmental scenario analysis. Elsevier

  • Pavlik D, Soehl D, Pluntke T, Mykhnovych A, Bernhofer C (2011) Dynamic downscaling of global climate projections for Eastern Europe with a horizontal resolution of 7 km. Environ Earth Sci. https://doi.org/10.1007/s12665-011-1081-1

    Google Scholar 

  • Petrov LO, Lavalle C, Kasanko M (2009) Urban land use scenarios for a tourist region in Europe: applying the MOLAND model to Algarve, Portugal. Landsc Urban Plan 92:10–23. https://doi.org/10.1016/j.landurbplan.2009.01.011

    Article  Google Scholar 

  • Pontius RG, Shusas E, McEachern M (2004) Detecting important categorical land changes while accounting for persistence. Agric Ecosyst Environ 101:251–268. https://doi.org/10.1016/j.agee.2003.09.008

    Article  Google Scholar 

  • Prishchepov A, Müller D, Dubinin M et al (2013) Determinants of agricultural land abandonment in post-Soviet European Russia. Land Use Policy 30:873–884. https://doi.org/10.1016/j.landusepol.2012.06.011

    Article  Google Scholar 

  • Ramírez R, Selin C (2014) Plausibility and probability in scenario planning. Foresight 16:54–74. https://doi.org/10.1108/FS-08-2012-0061

    Article  Google Scholar 

  • Riabchuk M (2008) Ukraine: lessons learned from other postcommunist transitions. Orbis 52(1):41–64

    Article  Google Scholar 

  • Rothman DS (2008) Chapter three: A survey of environmental scenarios. In: Alcamo J (ed) Developments in integrated environmental assessment. Elsevier, Amsterdam, pp 37–65

    Google Scholar 

  • Rounsevell MDA, Ewert F, Reginster I et al (2005) Future scenarios of European agricultural land use: II. Projecting changes in cropland and grassland. Agric Ecosyst Environ 107:117–135

    Article  Google Scholar 

  • Rounsevell MDA, Reginster I, Araujo MB et al (2006) A coherent set of future land use change scenarios for Europe. Agric Ecosyst Environ 114:57–68

    Article  Google Scholar 

  • Schanze J, Trümper J, Burmeister C, Pavlik D, Kruhlov I (2012) A methodology for dealing with regional change in integrated water resources management. Environ Earth Sci 65:1405–1414

    Article  Google Scholar 

  • Sleeter B, Sohl TL, Bouchard MA et al (2012) Scenarios of land use and land cover change in the conterminous United States: utilizing the special report on emission scenarios at ecoregional scales. Glob Environ Change 22:896–914. https://doi.org/10.1016/j.gloenvcha.2012.03.008

    Article  Google Scholar 

  • Sohl TL, Sleeter BM, Saylor KL, Barnes CA (2010) Addressing foundational elements of regional land-use change forecasting. Landsc Ecol 25:233–247. https://doi.org/10.1007/s10980-009-9391-3

    Article  Google Scholar 

  • Sohl TL, Sleeter BM, Sayler KL et al (2012) Spatially explicit land-use and land-cover scenarios for the Great Plains of the United States. Agric Ecosyst Environ 153:1–15. https://doi.org/10.1016/j.agee.2012.02.019

    Article  Google Scholar 

  • SRTM90-DEM (2000): Shuttle radar topography mission, (SRTM) 1 Arc-Second Global. http://dds.cr.usgs.gov/srtm/

  • Tavares Wahren F, Tarasiuk M, Mykhnovych A, Kit M, Feger K-H, Schwärzel K (2011) Estimation of spatially distributed soil information: dealing with data shortages in the Western Bug Basin, Ukraine. Spec Iss Environ Earth Sci 65(5):1501–1510. https://doi.org/10.1007/s12665-011-1197-3

    Article  Google Scholar 

  • Tavares Wahren F, Helm B, Schumacher F et al (2012) A modeling framework to assess water and nitrate balances in the Western Bug river basin, Ukraine. Adv Geosci 32:85–92. https://doi.org/10.5194/adgeo-32-85-2012

    Article  Google Scholar 

  • Verburg PH, Schulp CJE, Witte N, Veldkamp A (2006) Downscaling of land use change scenarios to assess the dynamics of European landscapes. Agric Ecosyst Environ 114:39–56

    Article  Google Scholar 

  • Verburg PH, van de Steeg J, Veldkamp A, Willemen L (2009) From land cover change to land function dynamics: a major challenge to improve land characterization. J Environ Manag 90:1327–1335. https://doi.org/10.1016/j.jenvman.2008.08.005

    Article  Google Scholar 

  • Wahren FT, Tarasiuk M, Mykhnovych A et al (2012) Estimation of spatially distributed soil information: dealing with data shortages in the Western Bug Basin, Ukraine. Environ Earth Sci 65:1501–1510

    Article  Google Scholar 

  • Wilson T, Sleeter B, Cameron R (2016) Future land-use related water demand in California. Environ Res Lett 11:054018. https://doi.org/10.1088/1748-9326/11/5/054018

    Article  Google Scholar 

Download references

Acknowledgements

The paper is based on work carried out under the research project “IWAS—International Water Alliance Saxony” (FKZ 02WM1028) which was being funded by the German Federal Ministry of Education and Research (BMBF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Burmeister.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burmeister, C., Schanze, J. Cross-sectoral projections of future land-cover change for the Upper Western Bug River catchment, Ukraine. Environ Earth Sci 77, 194 (2018). https://doi.org/10.1007/s12665-018-7338-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7338-1

Keywords

Navigation