Skip to main content
Log in

Pharmaceutical residues in aquatic environment and water remediation by TiO2 heterogeneous photocatalysis: a review

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The occurrence of pharmaceutical compounds in the natural water sources has been reported as early as in the year 1980. Until now, the presence of pharmaceutical compounds in the aquatic environment has been frequently reported in the literature. Moreover, increasing evidence suggests that these contaminants have posed a threat to both humans and ecosystems. In this regard, the present review paper seeks to offer an overview of this environmental issue of pharmaceutical pollution where the subject matters to be reviewed include the effects, sources and mitigation strategies of pharmaceuticals in the aquatic environment. Besides, a review of the fundamentals and mechanisms of heterogeneous photocatalysis technology is also presented in this paper. Heterogeneous photocatalysis is a rapidly expanding technology which has been extensively investigated and applied in wastewater treatment for the remediation of persistent pollutants such as pharmaceutical compounds during the last decade. Furthermore, the ideal photocatalyst titanium dioxide (TiO2), which can collaborate and perform well in the photocatalysis treatment process, is also discussed. The advantages and limitations associated with the application of this treatment method are summarized and discussed in details. Finally, this review paper focuses on the future trend of the photocatalysis technology and identifies the barriers and lacking parts which need to be resolved in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abellán M, Bayarri B, Giménez J, Costa J (2007) Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Appl Catal B Environ 74:233–241

    Article  Google Scholar 

  • Abellán M, Giménez J, Esplugas S (2009) Photocatalytic degradation of antibiotics: the case of sulfamethoxazole and trimethoprim. Catal Today 144:131–136

    Article  Google Scholar 

  • Achilleos A, Hapeshi E, Xekoukoulotakis N, Mantzavinos D, Fatta-Kassinos D (2010) UV-A and solar photodegradation of ibuprofen and carbamazepine catalyzed by TiO2. Sep Sci Technol 45:1564–1570

    Article  Google Scholar 

  • Aguilar C, Montalvo C, Ceron J, Moctezuma E (2011) Photocatalytic degradation of acetaminophen. Int J Environ Res 5:1071–1078

    Google Scholar 

  • Ai C, Zhou D, Wang Q, Shao X, Lei Y (2015) Optimization of operating parameters for photocatalytic degradation of tetracycline using In2S3 under natural solar radiation. Solar Energy 113:34–42

    Article  Google Scholar 

  • Akbarzadeh R, Umbarkar SB, Sonawane RS, Takle S, Dongare MK (2010) Vanadia–titania thin films for photocatalytic degradation of formaldehyde in sunlight. Appl Catal A 374:103–109

    Article  Google Scholar 

  • Al-Odaini NA, Zakaria MP, Yaziz MI, Surif S, Abdulghani M (2013) The occurrence of human pharmaceuticals in wastewater effluents and surface water of Langat River and its tributaries, Malaysia. Int J Environ Anal Chem 93:245–264

    Article  Google Scholar 

  • Al-Rasheed RA (2005) Water treatment by heterogeneous photocatalysis an overview. In: 4th SWCC acquired experience symposium, Jeddah, pp 1–14

  • An J, Zhou Q, Sun F, Zhang L (2009) Ecotoxicological effects of paracetamol on seed germination and seedling development of wheat (Triticum aestivum L.). J Hazard Mater 169:751–757

    Article  Google Scholar 

  • Arpin-Pont L, Bueno MJM, Gomez E, Fenet H (2016) Occurrence of PPCPs in the marine environment: a review. Environ Sci Pollut Res 23:4978–4991

    Article  Google Scholar 

  • Aziz NAA, Palaniandy P, Aziz HA, Dahlan I (2016) Review of the mechanism and operational factors influencing the degradation process of contaminants in heterogenous photocatalysis. J Chem Res 40:704–712

    Article  Google Scholar 

  • Bagheri H, Afkhami A, Noroozi A (2016) Removal of pharmaceutical compounds from hospital wastewaters using nanomaterials: a review. Anal Bioanal Chem Res 3:1–18

    Google Scholar 

  • Bahnemann D (2004) Photocatalytic water treatment: solar energy applications. Sol Energy 77:445–459

    Article  Google Scholar 

  • Bautista R, Anderson W, Pagsuyoin S, Munoz J (2015) Degradation of tetracycline in synthesized wastewater using immobilized TiO2 on rotating corrugated aluminum drum. In: Systems and information engineering design symposium (SIEDS), pp 115–119

  • Becker JA, Ortner P, Susan T-M (2010) Don’t rush to flush: safer pharmaceutical practices for hospice home care and home health nurses. Home Health Care Manage Pract 22(3):202–206

    Article  Google Scholar 

  • Belgiorno V et al (2007) Review on endocrine disrupting-emerging compounds in urban wastewater: occurrence and removal by photocatalysis and ultrasonic irradiation for wastewater reuse. Desalination 215:166–176

    Article  Google Scholar 

  • Blair BD (2016) Potential upstream strategies for the mitigation of pharmaceuticals in the aquatic environment: a brief review. Curr Environ Health Rep 3:153–160

    Article  Google Scholar 

  • Borghi AA, Palma MSA (2014) Tetracycline: production, waste treatment and environmental impact assessment. Braz J Pharm Sci 50:25–40

    Article  Google Scholar 

  • Borsuk ME, Maurer M, Lienert J, Larsen TA (2008) Charting a path for innovative toilet technology using multicriteria decision analysis. Environ Sci Technol 42:1855–1862

    Article  Google Scholar 

  • Borges M, García DM, Hernández T, Ruiz-Morales JC, Esparza P (2015) Supported photocatalyst for removal of emerging contaminants from wastewater in a continuous packed-bed photoreactor configuration. Catalysts 5:77–87

    Article  Google Scholar 

  • Bundschuh M, Hahn T, Ehrlich B, Höltge S, Kreuzig R, Schulz R (2016) Acute toxicity and environmental risks of five veterinary pharmaceuticals for aquatic macroinvertebrates. Bull Environ Contam Toxicol 96:139–143

    Article  Google Scholar 

  • Cai Q, Hu J (2017) Decomposition of sulfamethoxazole and trimethoprim by continuous UVA/LED/TiO2 photocatalysis: decomposition pathways, residual antibacterial activity and toxicity. J Hazard Mater 323:527–536

    Article  Google Scholar 

  • Chang X et al (2010) Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of three Gorge Reservoir in China. Environ Pollut 158:1444–1450

    Article  Google Scholar 

  • Choina J, Kosslick H, Fischer C, Flechsig G-U, Frunza L, Schulz A (2013) Photocatalytic decomposition of pharmaceutical ibuprofen pollutions in water over titania catalyst. Appl Catal B Environ 129:589–598

    Article  Google Scholar 

  • Chong MN, Cho YJ, Poh PE, Jin B (2015) Evaluation of Titanium dioxide photocatalytic technology for the treatment of reactive Black 5 dye in synthetic and real greywater effluents. J Clean Prod 89:196–202

    Article  Google Scholar 

  • Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Lett 142:185–194

    Article  Google Scholar 

  • Daghrir R, Drogui P (2013) Tetracycline antibiotics in the environment: a review. Environ Chem Lett 11:209–227

    Article  Google Scholar 

  • Daughton CG (2003) Cradle-to-cradle stewardship of drugs for minimizing their environmental disposition while promoting human health. II. Drug disposal, waste reduction, and future directions. Environ Health Perspect 111:775

    Article  Google Scholar 

  • Daughton CG (2014) Eco-directed sustainable prescribing: feasibility for reducing water contamination by drugs. Sci Total Environ 493:392–404

    Article  Google Scholar 

  • Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107:907

    Article  Google Scholar 

  • David A, Pancharatna K (2009) Effects of acetaminophen (paracetamol) in the embryonic development of zebrafish, Danio rerio. J Appl Toxicol 29:597–602

    Article  Google Scholar 

  • De la Cruz N, Dantas R, Giménez J, Esplugas S (2013) Photolysis and TiO2 photocatalysis of the pharmaceutical propranolol: solar and artificial light. Appl Catal B Environ 130:249–256

    Article  Google Scholar 

  • Doll TE, Frimmel FH (2005) Cross-flow microfiltration with periodical back-washing for photocatalytic degradation of pharmaceutical and diagnostic residues—evaluation of the long-term stability of the photocatalytic activity of TiO2. Water Res 39:847–854

    Article  Google Scholar 

  • Ebert I, Bachmann J, Kühnen U, Küster A, Kussatz C, Maletzki D, Schlüter C (2011) Toxicity of the fluoroquinolone antibiotics enrofloxacin and ciprofloxacin to photoautotrophic aquatic organisms. Environ Toxicol Chem 30:2786–2792

    Article  Google Scholar 

  • Elmolla ES, Chaudhuri M (2010a) Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process. J Hazard Mater 173:445–449

    Article  Google Scholar 

  • Elmolla ES, Chaudhuri M (2010b) Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2 TiO2 photocatalysis. Desalination 252:46–52

    Article  Google Scholar 

  • Emmanuel E, Perrodin Y, Keck G, Blanchard J-M, Vermande P (2005) Ecotoxicological risk assessment of hospital wastewater: a proposed framework for raw effluents discharging into urban sewer network. J Hazard Mater 117:1–11

    Article  Google Scholar 

  • Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159

    Article  Google Scholar 

  • Fukahori S, Fujiwara T, Ito R, Funamizu N (2012) Photocatalytic decomposition of crotamiton over aqueous TiO2 suspensions: determination of intermediates and the reaction pathway. Chemosphere 89:213–220

    Article  Google Scholar 

  • Gani KM, Kazmi AA (2016) Phthalate contamination in aquatic environment: a critical review of the process factors that influence their removal in conventional and advanced wastewater treatment. Crit Rev Environ Sci Technol 46:1402–1439

    Article  Google Scholar 

  • Gautam AK, Kumar S, Sabumon P (2007) Preliminary study of physico-chemical treatment options for hospital wastewater. J Environ Manag 83:298–306

    Article  Google Scholar 

  • Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C Photochem Rev 9:1–12

    Article  Google Scholar 

  • Gibson K (2010) Pharmaceuticals and personal care products (PPCPs): disposal, scientific, and regulatory challenges. Environ Qual Manage 20:39–48

    Article  Google Scholar 

  • Gültekin I, Ince NH (2007) Synthetic endocrine disruptors in the environment and water remediation by advanced oxidation processes. J Environ Manag 85:816–832

    Article  Google Scholar 

  • Halling-Sørensen B, Nors Nielsen S, Lanzky P, Ingerslev F, Holten Lützhøft H, Jørgensen S (1998) Occurrence, fate and effects of pharmaceutical substances in the environment-a review. Chemosphere 36:357–393

    Article  Google Scholar 

  • Hao R, Xiao X, Zuo X, Nan J, Zhang W (2012) Efficient adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride using mesoporous BiOI microspheres. J Hazard Mater 209:137–145

    Article  Google Scholar 

  • Hashim N, Thakur S, Patang M, Crapulli F, Ray AK (2017) Solar degradation of diclofenac using Eosin-Y-activated TiO2: cost estimation, process optimization and parameter interaction study. Environ Technol 38:933–944

    Article  Google Scholar 

  • Helwig K, Hunter C, McNaughtan M, Roberts J, Pahl O (2016) Ranking prescribed pharmaceuticals in terms of environmental risk: inclusion of hospital data and the importance of regular review. Environ Toxicol Chem 35:1043–1050

    Article  Google Scholar 

  • Ibhadon AO, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3:189–218

    Article  Google Scholar 

  • Jaeger CD, Bard AJ (1979) Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at titanium dioxide particulate systems. J Phys Chem 83:3146–3152

    Article  Google Scholar 

  • Jallouli N, Elghniji K, Trabelsi H, Ksibi M (2014) Photocatalytic degradation of paracetamol on TiO2 nanoparticles and TiO2/cellulosic fiber under UV and sunlight irradiation. Arab J Chem. doi:10.1016/j.arabjc.2014.03.014

    Google Scholar 

  • Jelić A, Gros M, Petrović M, Ginebreda A, Barceló D (2012) Occurrence and elimination of pharmaceuticals during conventional wastewater treatment. Emerging and priority pollutants in Rivers. Springer, Berlin Heidelberg, pp 1–23

    Google Scholar 

  • Ji Y, Zhou L, Ferronato C, Yang X, Salvador A, Zeng C, Chovelon J-M (2013) Photocatalytic degradation of atenolol in aqueous titanium dioxide suspensions: kinetics, intermediates and degradation pathways. J Photochem Photobiol A Chem 254:35–44

    Article  Google Scholar 

  • Jiménez M, Ignacio Maldonado M, Rodríguez EM, Hernández-Ramírez A, Saggioro E, Carra I, Sánchez Pérez JA (2015) Supported TiO2 solar photocatalysis at semi-pilot scale: degradation of pesticides found in citrus processing industry wastewater, reactivity and influence of photogenerated species. J Chem Technol Biotechnol 90:149–157

    Article  Google Scholar 

  • Kaan CC, Aziz AA, Matheswaran M, Saravanan P, Ibrahim S (2012) Heterogeneous photocatalytic oxidation an effective tool for wastewater treatment—a review. In: Studies on water management issues. INTECH, pp 219–236

  • Kanakaraju D, Glass BD, Oelgemöller M (2014) Titanium dioxide photocatalysis for pharmaceutical wastewater treatment. Environ Chem Lett 12:27–47

    Article  Google Scholar 

  • Kaur A, Umar A, Kansal SK (2016) Heterogeneous photocatalytic studies of analgesic and non-steroidal anti-inflammatory drugs. Appl Catal A Gen 510:134–155

    Article  Google Scholar 

  • Khetan SK, Collins TJ (2007) Human pharmaceuticals in the aquatic environment: a challenge to green chemistry. Chem Rev 107:2319–2364

    Article  Google Scholar 

  • Khataee A, Fathinia M, Joo S (2013) Simultaneous monitoring of photocatalysis of three pharmaceuticals by immobilized TiO2 nanoparticles: chemometric assessment, intermediates identification and ecotoxicological evaluation. Spectrochim Acta Part A Mol Biomol Spectrosc 112:33–45

    Article  Google Scholar 

  • Kidd KA, Blanchfield PJ, Mills KH, Palace VP, Evans RE, Lazorchak JM, Flick RW (2007) Collapse of a fish population after exposure to a synthetic estrogen. Proc Natl Acad Sci 104:8897–8901

    Article  Google Scholar 

  • K’oreje K, Vergeynst L, Ombaka D, De Wispelaere P, Okoth M, Van Langenhove H, Demeestere K (2016) Occurrence patterns of pharmaceutical residues in wastewater, surface water and groundwater of Nairobi and Kisumu city, Kenya. Chemosphere 149:238–244

    Article  Google Scholar 

  • Kümmerer K (2001) Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources—a review. Chemosphere 45:957–969

    Article  Google Scholar 

  • Kümmerer K (2009) Antibiotics in the aquatic environment—a review—part I. Chemosphere 75:417–434

    Article  Google Scholar 

  • LA Ioannou HE, Vasquez MI, Mantzavinos D, Fatta-Kassinos D (2011) Solar/TiO2 photocatalytic decomposition of beta-blockers atenolol and propranolol in water and wastewater. Sol Energy 85:1915–1926

    Article  Google Scholar 

  • Lalhriatpuia C, Tiwari D, Tiwari A, Lee SM (2015) Immobilized Nanopillars-TiO2 in the efficient removal of micro-pollutants from aqueous solutions: physico-chemical studies. Chem Eng J 281:782–792

    Article  Google Scholar 

  • Lamichhane K, Babcock R (2012) An economic appraisal of using source separation of human urine to contain and treat endocrine disrupters in the USA. J Environ Monit 14:2557–2565

    Article  Google Scholar 

  • Lange A, Paull GC, Coe TS, Katsu Y, Urushitani H, Iguchi T, Tyler CR (2009) Sexual reprogramming and estrogenic sensitization in wild fish exposed to ethinylestradiol. Environ Sci Technol 43:1219–1225

    Article  Google Scholar 

  • Laoufi NA, Hout S, Tassalit D, Ounnar A, Djouadi A, Chekir N, Bentahar F (2013) Removal of a persistent pharmaceutical micropollutant by UV/TiO2 process using an immobilized titanium dioxide catalyst: parametric study. Chem Eng 32:1951–1958

    Google Scholar 

  • Länge R et al (2001) Effects of the synthetic estrogen 17α-ethinylestradiol on the life-cycle of the fathead minnow (Pimephales promelas). Environ Toxicol Chem 20:1216–1227

    Article  Google Scholar 

  • Lee CM, Palaniandy P, Zaman NQ, Adlan MN (2015) Pharmaceutical removal from synthetic wastewater using heterogeneous-photocatalyst. Appl Mech Mater 802:507–512

    Article  Google Scholar 

  • Lienert J, Haller M, Berner A, Stauffacher M, Larsen TA (2003) How farmers in Switzerland perceive fertilizers from recycled anthropogenic nutrients (urine). Water Sci Technol 48:47–56

    Google Scholar 

  • Lofrano G, Rizzo L, Grassi M, Belgiorno V (2009) Advanced oxidation of catechol: a comparison among photocatalysis, Fenton and photo-Fenton processes. Desalination 249:878–883

    Article  Google Scholar 

  • Luo Z, Li L, Wei C, Li H, Chen D (2015) Role of active oxidative species on TiO2 photocatalysis of tetracycline and optimization of photocatalytic degradation conditions. J Environ Biol 36:837

    Google Scholar 

  • Maroga Mboula V, Hequet V, Gru Y, Colin R, Andres Y (2012) Assessment of the efficiency of photocatalysis on tetracycline biodegradation. J Hazard Mater 209:355–364

    Article  Google Scholar 

  • Moctezuma E, Leyva E, Aguilar CA, Luna RA, Montalvo C (2012) Photocatalytic degradation of paracetamol: intermediates and total reaction mechanism. J Hazard Mater 243:130–138

    Article  Google Scholar 

  • Mozia S, Morawski AW (2012) The performance of a hybrid photocatalysis–MD system for the treatment of tap water contaminated with ibuprofen. Catal Today 193:213–220

    Article  Google Scholar 

  • Moore M, Greenway S, Farris J, Guerra B (2008) Assessing caffeine as an emerging environmental concern using conventional approaches. Arch Environ Contam Toxicol 54:31–35

    Article  Google Scholar 

  • Naddeo V, Meriç S, Kassinos D, Belgiorno V, Guida M (2009) Fate of pharmaceuticals in contaminated urban wastewater effluent under ultrasonic irradiation. Water Res 43:4019–4027

    Article  Google Scholar 

  • Nasuhoglu D, Yargeau V, Berk D (2011) Photo-removal of sulfamethoxazole (SMX) by photolytic and photocatalytic processes in a batch reactor under UV-C radiation (λ max = 254 nm). J Hazard Mater 186:67–75

    Article  Google Scholar 

  • Oggier DM, Weisbrod CJ, Stoller AM, Zenker AK, Fent K (2010) Effects of diazepam on gene expression and link to physiological effects in different life stages in zebrafish Danio rerio. Environ Sci Technol 44:7685–7691

    Article  Google Scholar 

  • Palominos RA, Mondaca MA, Giraldo A, Penuela G, Pérez-Moya M, Mansilla HD (2009) Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions. Catal Today 144:100–105

    Article  Google Scholar 

  • Putschew A, Wischnack S, Jekel M (2000) Occurrence of triiodinated X-ray contrast agents in the aquatic environment. Sci Total Environ 255:129–134

    Article  Google Scholar 

  • Quadra GR, de Souza HO, dos Santos Costa R, dos Santos Fernandez MA (2016) Do pharmaceuticals reach and affect the aquatic ecosystems in Brazil? A critical review of current studies in a developing country. Environ Sci Pollut Res 24:1200–1218

    Article  Google Scholar 

  • Rizzo L, Meric S, Guida M, Kassinos D, Belgiorno V (2009) Heterogenous photocatalytic degradation kinetics and detoxification of an urban wastewater treatment plant effluent contaminated with pharmaceuticals. Water Res 43:4070–4078

    Article  Google Scholar 

  • Rosa G (2008) Study the effects of propranolol drug for Ceriodaphnia silvestrii (Cladocera, Crustacea) with emphasis on effects on populations (In Portuguese). Master Dissertation, University of São Paulo

  • Runnalls TJ, Hala DN, Sumpter JP (2007) Preliminary studies into the effects of the human pharmaceutical clofibric acid on sperm parameters in adult Fathead minnow. Aquat Toxicol 84:111–118

    Article  Google Scholar 

  • Saadati F, Keramati N, Ghazi MM (2016) Influence of parameters on the photocatalytic degradation of tetracycline in wastewater: a review. Crit Rev Environ Sci Technol 46:757–782

    Article  Google Scholar 

  • Sacher F, Lange FT, Brauch H-J, Blankenhorn I (2001) Pharmaceuticals in groundwaters: analytical methods and results of a monitoring program in Baden-Württemberg, Germany. J Chromatogr A 938:199–210

    Article  Google Scholar 

  • Sangion A, Gramatica P (2016) Hazard of pharmaceuticals for aquatic environment: prioritization by structural approaches and prediction of ecotoxicity. Environ Int 95:131–143

    Article  Google Scholar 

  • Sharma M, Jain T, Singh S, Pandey O (2012) Photocatalytic degradation of organic dyes under UV–visible light using capped ZnS nanoparticles. Sol Energy 86:626–633

    Article  Google Scholar 

  • Sim W-J, Lee J-W, Lee E-S, Shin S-K, Hwang S-R, Oh J-E (2011) Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere 82:179–186

    Article  Google Scholar 

  • Spasiano D, Marotta R, Malato S, Fernandez-Ibanez P, Di Somma I (2015) Solar photocatalysis: materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Appl Catal B Environ 170:90–123

    Article  Google Scholar 

  • Stoner S, Kosinski K (2008) Pharmaceuticals as emerging contaminants: a rationale for reduction in New York State’s waters. http://www.dec.ny.gov/docs/water_pdf/drugbkgrd_.pdf. Accessed 24 March 2015

  • Straub JO (2016) Reduction in the environmental exposure of pharmaceuticals through diagnostics, Personalised Healthcare and other approaches. A mini review and discussion paper. Sustain Chem Pharm 3:1–7

    Article  Google Scholar 

  • Suarez S, Lema JM, Omil F (2009) Pre-treatment of hospital wastewater by coagulation–flocculation and flotation. Bioresour Technol 100:2138–2146

    Article  Google Scholar 

  • Szabó L, Tóth T, Homlok R, Takács E, Wojnárovits L (2012) Radiolysis of paracetamol in dilute aqueous solution. Radiat Phys Chem 81:1503–1507

    Article  Google Scholar 

  • Talib A, Randhir TO (2016) Managing emerging contaminants in watersheds: need for comprehensive, systems-based strategies. Exposure Health 8:143–158

    Article  Google Scholar 

  • Taylor D, Senac T (2014) Human pharmaceutical products in the environment–The “problem” in perspective. Chemosphere 115:95–99

    Article  Google Scholar 

  • Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:3245–3260

    Article  Google Scholar 

  • Torun M, Gültekin Ö, Şolpan D, Güven O (2015) Mineralization of paracetamol in aqueous solution with advanced oxidation processes. Environ Technol 36:970–982

    Article  Google Scholar 

  • Vaizoğullar Aİ (2017) TiO2/ZnO Supported on sepiolite: preparation, structural characterization and photocatalytic degradation of flumequine antibiotic in aqueous solution. Chem Eng Commun 204:689–697

    Article  Google Scholar 

  • Wilkinson JL, Hooda PS, Barker J, Barton S, Swinden J (2016) Ecotoxic pharmaceuticals, personal care products, and other emerging contaminants: a review of environmental, receptor-mediated, developmental, and epigenetic toxicity with discussion of proposed toxicity to humans. Crit Rev Environ Sci Technol 46:336–381

    Article  Google Scholar 

  • Wolff M (2011) Ecotoxicological assessment of antidepressant fluoxetine hydrochloride (In Portuguese). Master Degree Dissertation, State University of Campinas

  • Wu S, Zhang L, Chen J (2012) Paracetamol in the environment and its degradation by microorganisms. Appl Microbiol Biotechnol 96:875–884

    Article  Google Scholar 

  • Xekoukoulotakis NP, Drosou C, Brebou C, Chatzisymeon E, Hapeshi E, Fatta-Kassinos D, Mantzavinos D (2011) Kinetics of UV-A/TiO2 photocatalytic degradation and mineralization of the antibiotic sulfamethoxazole in aqueous matrices. Catal Today 161:163–168

    Article  Google Scholar 

  • Yahiat S, Fourcade F, Brosillon S, Amrane A (2011) Removal of antibiotics by an integrated process coupling photocatalysis and biological treatment–case of tetracycline and tylosin. Int Biodeterior Biodegrad 65:997–1003

    Article  Google Scholar 

  • Yang L, Liya EY, Ray MB (2008a) Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis. Water Res 42:3480–3488

    Article  Google Scholar 

  • Yang L, Yu LE, Ray MB (2008b) Photocatalytic oxidation of paracetamol: dominant reactants, intermediates, and reaction mechanisms. Environ Sci Technol 43:460–465

    Article  Google Scholar 

  • Zhang X, Wu F, Wu X, Chen P, Deng N (2008) Photodegradation of acetaminophen in TiO2 suspended solution. J Hazard Mater 157:300–307

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Ministry of Higher Education (MOHE) for funding this project under grant Fundamental Research Grant Scheme (FRGS); Grant number: 203/PAWAM/6071256 as well as the support of Universiti Sains Malaysia (USM) for providing the Intensif Grant and USM Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puganeshwary Palaniandy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, C.M., Palaniandy, P. & Dahlan, I. Pharmaceutical residues in aquatic environment and water remediation by TiO2 heterogeneous photocatalysis: a review. Environ Earth Sci 76, 611 (2017). https://doi.org/10.1007/s12665-017-6924-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6924-y

Keywords

Navigation