Skip to main content

Advertisement

Log in

Environmental fragility framework for water supply systems: a case study in the Paulista Macro Metropolis area (SE Brazil)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Water resources availability is increasingly constrained, considering the quality and quantity available for use. There is an urgent need of recovering this availability, focusing on the planning and management process of water supply systems. One of the main threats to water resources is related to erosion effects, namely widespread pollution load and the silting of watercourses and reservoirs useful life reduction. The objective of this study was to evaluate water supply systems environmental fragility within the Paulista Macro Metropolis area and to use the results to develop environmental zone classes to orient territorial planning. The study was conducted in seven superficial water supply systems of the aforementioned region. Environmental fragility evaluation was focused on four environmental variables that represent natural vulnerability to erosion, and 2015 land cover map to delineate human influence on erosive processes. Results indicate that Tietê River water supply systems, namely Piracicaba, Capivari and Jundiaí (PCJ) and Itupararanga systems, can be considered the most fragile water supply systems in the study area. The environmental fragility map was used to derive the environmental zoning map, including conservation and priority areas, suitable regions for agriculture expansion, and areas with high needs for restoration efforts. In addition, environmental fragility framework herein can be viewed as a model with high replication potential for regional planning and management in that land cover can be manipulated to minimize environment natural vulnerability, guiding territorial occupation toward a more sustainable landscape design, which subsidizes water resources multiple uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Addams L, Boccaletti G, Kerlin M, Stuchtey M (2009) Charting our water future. Economic frameworks to inform decision making, 2030. Report

  • Almeida RFB, Bayer M, Ferreira Júnior LG (2016) Compartimentação morfométrica da Bacia do Rio Coco como subsídio a análise de fragilidade ambiental. Mercator 15(4):83–94

    Article  Google Scholar 

  • Bacani VM, Sakamoto AY, Luchiari A, Quénol H (2015) Sensoriamento remoto e SIG aplicados à avaliação da fragilidade ambiental de bacia hidrográfica. Mercator 14(2):119–135

    Article  Google Scholar 

  • Baptista I, Ritsema C, Geissen V (2015) Effect of integrated water-nutrient management strategies on soil erosion mediated nutrient loss and crop productivity in Cabo Verde Drylands. PLoS ONE 10(7):e0134244

    Article  Google Scholar 

  • Bertolo LS, Santos RF, de Agar PM, de Pablo CTL (2015) Land-use changes assessed by overlay or mosaic methods: which method is best for management planning? Ecol Indic 55:32–43

    Article  Google Scholar 

  • Bertoni J, Lombardi Neto A (1999) Conservação do solo [soil conservation]. Icone, São Paulo (in Portuguese)

    Google Scholar 

  • Bossard M, Feranec J, Otahel J (2000) CORINE land cover technical guide. Addendum

  • Collins AL, Zhang Y (2016) Exceedance of modern “background”fine-grained sediment delivery to rivers due to current agricultural land use and uptake of water pollution mitigation options across England and Wales. Environ Sci Policy 61:61–73

    Article  Google Scholar 

  • Crane C (2003) Proposed development of sediment quality guidelines under the European water framework directive: a critique. Toxicol Lett 142:195–206

    Article  Google Scholar 

  • Crepani E, Medeiros JS, Azevedo LG, Duarte V, Hernandez P, Florenzano T (1996) Curso de sensoriamento remoto aplicado ao zoneamento ecológico-econômico. São José dos Campos, INPE (in Portuguese)

    Google Scholar 

  • Cruz BB, Miranda LE, Cetra M (2013) Links between riparian landcover, instream environment and fish assemblages in headwater streams of south-eastern Brazil. Ecol Freshw Fish 22(4):607–616

    Article  Google Scholar 

  • Cunha ER, Bacani VM (2016) Caracterização da fragilidade ambiental da bacia hidrográfica do córrego Come Onça, Água Clara/MS. Acta Geográfica 10(22):193–205

    Google Scholar 

  • Dalla Corte AP, Klein Hentz ÂM, Doubrawa B, Sanquetta CR (2015) Fragilidad ambiental de la cuenca del río Iguaçu, Paraná-Brasil. Bosque 36(2):287–297

    Article  Google Scholar 

  • DEFRA—Department for Environment, Food and Rural Affairs (2005) Controlling soil erosion. A manual for the assessment and management of agricultural land at risk of water erosion in Lowland England

  • Dethier DP, Ouimet W, Bierman PR, Rood DH, Balco G (2014) Basins and bedrock: spatial variation in 10Be erosion rates and increasing relief in the southern Rocky Mountains, USA. Geology 42(2):167–170

    Article  Google Scholar 

  • Dorici M, Costa CW, de Moraes MCP, Piga FG, Lorandi R, de Lollo JA, Moschini LE (2016) Accelerated erosion in a watershed in the southeastern region of Brazil. Environ Earth Sci 75(19):1301

    Article  Google Scholar 

  • Drăguţ L, Eisank C (2012) Automated object-based classification of topography from SRTM data. Geomorphology 141:21–33

    Google Scholar 

  • EMBRAPA—Brazilian Agricultural Research Corporation (2003) Climatic Data Bank of Brazil. Embrapa Solos, Rio de Janeiro

    Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 22:570–574

    Article  Google Scholar 

  • Frey SK, Gottschall N, Wilkes G, Grégoire DS, Topp E, Pintar KDM, Sunohara M, Marti R, Lapen DR (2015) Rainfall-induced runoff from exposed streambed sediments: an important source of water pollution. J Environ Qual 44(1):236–247

    Article  Google Scholar 

  • Furlan A, Bonotto DM, Gumiere SJ (2011) Development of environmental and natural vulnerability maps for Brazilian coastal at São Sebastião in São Paulo State. Environ Earth Sci 64(3):659–669

    Article  Google Scholar 

  • Gattinger A, Muller A, Haeni M, Skinner C, Fliessbach A, Buchmann N et al (2012) Enhanced top soil carbon stocks under organic farming. Proc Natl Acad Sci 109:18226–18231

    Article  Google Scholar 

  • Ghestem M, Veylon G, Bernard A, Vanel Q, Stokes A (2014) Influence of plant root system morphology and architectural traits on soil shear resistance. Plant Soil 377(1–2):43–61

    Article  Google Scholar 

  • Glasson J, Therivel R, Chadwick A (2012) Introduction to environmental impact assessment. Routledge, London

    Google Scholar 

  • Horowitz AJ, Stephens VC, Elrick KA, Smith JJ (2012) Concentrations and annual fluxes of sediment-associated chemical constituents from conterminous US coastal rivers using bed sediment data. Hydrol Process 26:1090–1114

    Article  Google Scholar 

  • Humphries MS, Kindness A, Ellery WN, Hughes JC, Bond JK, Barnes KB (2011) Vegetation influences on groundwater salinity and chemical heterogeneity in a freshwater, recharge floodplain wetland, South Africa. J Hydrol 411:130–139

    Article  Google Scholar 

  • IPT - Instituto de Pesquisas Tecnológicas do Estado de São Paulo [Saão Paulo State Institute of Technological Research] (2012) Cadastramento de erosão e inundação no Estado de São Paulo Report, São Paulo, Brasil (in Portuguese)

  • Jacobi PR, Cibim J, Leão RS (2015) Crise hídrica na Macrometrópole Paulista e respostas da sociedade civil. Estud Av 29(84):27–42

    Article  Google Scholar 

  • Kawakubo FS, Morato RG, Campos KC, Luchiari A, Ross JLS (2005) Empirical characterization of environmental fragility using geoprocessing. In: INPE (ed) Proceedings of XII Brazilian Remote Sensing symposium. INPE, São José dos Campos, Brazil, pp 2203–2210

  • Kay P, Grayson R, Phillips M, Stanley K, Dodsworth A, Hanson A, Walker A, Foulger M, McDonnell I, Taylor S (2012) The effectiveness of agricultural stewardship for improving water quality at the catchment scale: experiences from an NVZ and ECSFDI watershed. J Hydrol 422:10–16

    Article  Google Scholar 

  • Koppen W (1948) Climatology: a study of the climates of the earth. Fundo de Cultura Econômica, Ciudad del México

    Google Scholar 

  • Kronvang B, Laubel A, Grant R (1997) Suspended sediment and particulate phosphorus transport and delivery pathways in an arable catchment Gelbaek stream, Denmark. Hydrol Process 6:627–642

    Article  Google Scholar 

  • Le Bissonnais Y (2016) Aggregate stability and assessment of soil crustability and erodibility: i. Theory and methodology. Eur J Soil Sci 67(1):11–21

    Article  Google Scholar 

  • Manfré LA, Da Silva AM, Urban RC, Rodgers J (2013) Environmental fragility evaluation and guidelines for environmental zoning: a study case on Ibíuna (the Southeastern Brazilian region). Environ Earth Sci 69(3):947–957

    Article  Google Scholar 

  • Manfré LA, de Albuquerque Nóbrega RA, Quintanilha JA (2015) Regional and local topography subdivision and landform mapping using SRTM-derived data: a case study in southeastern Brazil. Environ Earth Sci 73(10):6457–6475

    Article  Google Scholar 

  • Montaño M, de Souza MP (2016) Integração entre planejamento do uso do solo e de recursos hídricos: a disponibilidade hídrica como critério para a localização de empreendimentos. Eng Sanit Ambient 21(3):1–7

    Article  Google Scholar 

  • Pusey BJ, Arthington AH (2003) Importance of the riparian zone to the conservation and management of freshwater fish: a review. Mar Freshw Res 54:1–16

    Article  Google Scholar 

  • Rasmussen PE, Goulding KW, Brown JR, Grace PR, Janzen HH, Körschens M (1998) Long-term agroecosystem experiments: assessing agricultural sustainability and global change. Science 282(5390):893–896

    Article  Google Scholar 

  • Rickson RJ (2014) Can control of soil erosion mitigate water pollution by sediments? Sci Total Environ 468:1187–1197

    Article  Google Scholar 

  • Ross JLS (1994) Empirical analysis of the fragility of the natural and anthropogenic environments. Revista do Departamento de Geografia FFLCH-USP 8:63–74

    Google Scholar 

  • Shields FD Jr, Lizotte RE Jr, Knight SS, Cooper CM, Wilcox D (2010) The stream channel incision syndrome and water quality. Ecol Eng 36:78–90

    Article  Google Scholar 

  • Silva AM, Huang CH, Francesconi W, Saintil T, Villegas J (2015) Using landscape metrics to analyze micro-scale soil erosion processes. Ecol Indic 56:184–193

    Article  Google Scholar 

  • Silva Neto JCA (2014) Evaluation of vulnerability to loss of soil in watershed of Salobra river, MS, based on the forms of terrain. Geografia 22:5–25

    Google Scholar 

  • Silva JDSV, Santos RF (2004) Zoneamento para planejamento ambiental: vantagens e restrições de métodos e técnicas. Cadernos de Ciência & Tecnologia 21(2):221–263 (in Portuguese)

    Google Scholar 

  • Spörl C (2001) Analysis of environmental fragility relief-soil with application of three alternative models in the high watershed of Jaguari-Mirim River, Quartel Stream and Prata River. Dissertation, University of São Paulo

  • Spörl C, Ross JLS (2004) Análise comparativa da fragilidade ambiental com aplicação de três modelos. GEOUSP—Espaço e Tempo, São Paulo 15:39–49

    Google Scholar 

  • Tricart J (1977) ecodinâmica. In: Série recursos naturais e meio ambiente, vol 1. SUPREN/IBGE (in Portuguese)

  • Uddin K, Murthy MSR, Wahid SM, Matin MA (2016) Estimation of soil erosion dynamics in the Koshi Basin using GIS and Remote sensing to assess priority areas for conservation. PLoS ONE 11(3):e0150494

    Article  Google Scholar 

  • United States. Soil Conservation Service (1975) Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys, vol 436. US Department of Agriculture, Soil Conservation Service, Washington, D.C.

  • Valeriano MM (2008) Topodata: guia para utilizacão de dados geomorfológicos locais [Topodata: guide to using local geomorphological data]. Instituto Nacional de Pesquisas Espaciais— INPE-15318-RPQ/818, São José dos Campos, São Paulo (in Portuguese)

  • Valeriano MM, Rossetti FD (2012) Topodata: Brazilian full coverage refinement of SRTM data. Appl Geogr 32(2):300–309

    Article  Google Scholar 

  • Varella CAA, Sena Junior DG (2000) Estudo do interpolador IDW para utilização em agricultura de precisão. Universidade Federal Rural do Rio de Janeiro Rural Federal University– Soils Department, Rio de Janeiro www.ufrrj.br/institutos/it/deng/varella/Downloads/IA1328_agricultura_de_precisao/mapeamento/IDW.DOC. Accessed 7 Dec 2016

  • Vincent JR (2010) Microeconomic analysis of innovative environmental programs in developing countries. Rev Environ Econ Policy 4(2):221–233

    Article  Google Scholar 

  • Wang L, Huang J, Du Y, Hu Y, Han P (2013) Dynamic assessment of soil erosion risk using Landsat TM and HJ satellite data in Danjiangkou Reservoir area, China. Remote Sens 5(8):3826–3848

    Article  Google Scholar 

  • Zhao G, Mu X, Wen Z, Wang F, Gao P (2013) Soil erosion, conservation, and eco-environment changes in the loess Plateu of China. Land Degrad Dev 24:499–510

    Google Scholar 

Download references

Acknowledgements

We are grateful to innumerable people from the Democracy and Sustainability Institute—IDS NGO and the GIS Laboratory of the Polytechnic School of Engineering of the University of São Paulo—USP, for cooperation and support during study development, including João Paulo Capobianco, Ph.D. Juliana Cibim, Guilherme Checco, Leandro Santos, Dr. Mariana Abrantes Giannotti, Ph.D. Claudia Soares Machado, Mariana Piesco and Alan Costa Nunes. We also thank Ph.D. Mariana Abrantes Giannotti and Ph.D. Juliana Cassano Cibim for helpful reviews of the manuscript. This study was funded by IDS NGO (March 2015—August 2016), and it is part of the water resources agenda of the technical—scientific partnership between IDS NGO, Energy and Environment Institute (IEE-USP) and the Laboratory of the Polytechnic School of Engineering of University of São Paulo (USP). Finally, we thank CNPq for grant conceded to Ph.D. José Alberto Quintanilha.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Cruz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, B.B., Manfré, L.A., Ricci, D. et al. Environmental fragility framework for water supply systems: a case study in the Paulista Macro Metropolis area (SE Brazil). Environ Earth Sci 76, 441 (2017). https://doi.org/10.1007/s12665-017-6778-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6778-3

Keywords

Navigation