Skip to main content

Advertisement

Log in

A distributed monthly water balance model: formulation and application on Black Volta Basin

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Recharge assessment is of critical importance for groundwater resources evaluation in arid/semiarid areas, as these have typically limited surface water resources. There are several models for water balance evaluation. One of them is WetSpass, which has the ability to simulate spatially distributed recharge, surface runoff, and evapotranspiration for seasonally averaged conditions. This paper presents a modified methodology and model, WetSpass-M, in which the seasonal resolution is downscaled to a monthly scale. A generalized runoff coefficient was introduced, enabling runoff estimation for different land-use classes. WetSpass-M has been calibrated and validated with observed streamflow records from Black Volta. Base-flow from simulated recharge was compared with base-flow derived via a digital filter applied to the observed streamflow and has shown to be in agreement. Previous studies have concluded that for this basin, small changes in rainfall could cause a large change in surface runoff, and here a similar behavior is observed for recharge rates. An advantage of the new model is that it is applicable to medium- and large-sized catchments. It is useful as an assessment tool for evaluating the response of hydrological processes to the changes in associated hydrological variables. Since monthly data for streamflow and climatic variables are widely available, this new model has the potential to be used in regions where data availability at high temporal resolution is an issue. The spatial–temporal characteristics of the model allow distributed quantification of water balance components by taking advantage of remote sensing data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

(Source: GLOWA project, Rodgers et al. 2007)

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdollahi K (2015) Basin scale water balance modeling for variable hydrological regimes and temporal scales, Ph.D. Vrije Universiteit Brussel, Belgium

  • Abu-Saleem A, Al-Zubi Y, Rimawi O, Al-Zubi J, Alouran N (2010) Estimation of water balance components in the Hasa basin with GIS based WetSpass model. Agron J 9(3):119–125

    Article  Google Scholar 

  • Afsis (2013) Digital maps. http://africasoils.net

  • Al Kuisi M, El-Naqa A (2013) GIS based spatial groundwater recharge estimation in the Jafr basin, Jordan-application of WetSpass models for arid regions. Rev Mex Cienc Geol 30(1):96–109

    Google Scholar 

  • Ampe EM, Vanhamel I, Salvadore E, Dams J, Bashir I, Demarchi L, Batelaan O (2012) Impact of urban land-cover classification on groundwater recharge uncertainty. IEEE J Sel Top Appl Earth Obs Remote Sens 99:1–9

    Google Scholar 

  • Armbruster V, Leibundgut C (2001) Determination of spatially and temporally highly detailed groundwater recharge in porous aquifers by a SVAT model. Phys Chem Earth B Hydrol Oceans Atmos 26(7):607–611

    Article  Google Scholar 

  • Arnold JG, Allen PM (1999) Automated methods for estimating base-flow and groundwater recharge from stream-flow records. J Am Water Resour Assoc 35(2):411–424

    Article  Google Scholar 

  • Arnold JG, Muttiah RS, Srinivasan R, Allen PM (2000) Regional estimation of base-flow and groundwater recharge in the Upper Mississippi river basin. J Hydrol 227(1):21–40

    Article  Google Scholar 

  • Bahremand A, De Smedt F, Corluy J, Liu YB, Poorova J, Velcicka L, Kunikova E (2007) WetSpa model application for assessing reforestation impacts on floods in Margecany–Hornad watershed, Slovakia. Water Resour Manag 21(8):1373–1391

    Article  Google Scholar 

  • Barry B, Obuobie E, Andreini M, Andah W and Pluquet M (2005) The Volta river basin. Comparative study of river basin development and management. Rapport, IWMI, CAWMA

  • Batelaan O, De Smedt F (2001) WetSpass: a flexible, GIS based, distributed recharge methodology for regional groundwater modeling, vol 269. IAHS Publication, pp 11–18

  • Batelaan O, De Smedt F (2007) GIS-based recharge estimation by coupling surface–subsurface water balances. J Hydrol 337(3):337–355

    Article  Google Scholar 

  • Batelaan O, Wang ZM, De Smedt F (1996) An adaptive GIS toolbox for hydrological modeling. In: Kovar K, Nachtnebel HP (eds) Application of geographic information systems in hydrology and water resources management. IAHS Publication 235:3–9

  • Batelaan O, De Smedt F, Triest L (2003) Regional groundwater discharge: phreatophyte mapping, groundwater modelling and impact analysis of land-use change. J Hydrol 275(1–2):86–108

    Article  Google Scholar 

  • Batjes NH (2009) Harmonized soil profile data for applications at global and continental scales: updates to the WISE database. Soil Use Mange 25(2):124–127

    Article  Google Scholar 

  • Bunya S, Dietrich JC, Westerink JJ, Ebersole BA, Smith JM, Atkinson JH, Roberts HJ (2010) A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for southern Louisiana and Mississippi. Part I: model development and validation. Mon Weather Rev 138(2):345–377

    Article  Google Scholar 

  • Chen JF, Lee CH, Yeh TCJ, Yu JL (2005) A water budget model for the Yun-Lin plain, Taiwan. Water Resour Manag 19(5):483–504

    Article  Google Scholar 

  • Creutzfeldt B, Güntner A, Vorogushyn S, Merz B (2010) The benefits of gravimeter observations for modelling water storage changes at the field scale. Hydrol Earth Syst Sci 14(9):1715

    Article  Google Scholar 

  • Critchley W, Siegert K (1991) Water harvesting: a manual for the design and construction of water harvesting schemes for plant production. AGL Miscellaneous Paper no. 17, FAO, Rome, Italy

  • De Groen MM (2002) Modeling interception and transpiration at monthly time steps introducing daily variability through Markov chains. Ph.D. Dissertation, IHE-Delft. Swets and Zeitlinger, Lisse, The Netherlands

  • De Groen MM, Savenije HH (2006) A monthly interception equation based on the statistical characteristics of daily rainfall. Water Resour Res 42(12):W12417. doi:10.1029/2006WR005013

    Article  Google Scholar 

  • Dhakal N, Fang X, Cleveland TG, Thompson DB, Asquith WH, Marzen LJ (2011) Estimation of volumetric runoff coefficients for Texas watersheds using land-use and rainfall-runoff data. J Irrig Drain Eng 138(1):43–54

    Article  Google Scholar 

  • Freeze RA (1969) The mechanism of natural groundwater recharge and discharge: one-dimensional, vertical, unsteady, unsaturated flow above a recharging or discharging groundwater flow system. Water Resour Res 5(1):153–171

    Article  Google Scholar 

  • Gebreyohannes T, De Smedt F, Walraevens K, Gebresilassie S, Hussien A, Hagos M, Gebrehiwot K (2013) Application of a spatially distributed water balance model for assessing surface water and groundwater resources in the Geba basin, Tigray, Ethiopia. J Hydrol 499:110–123

    Article  Google Scholar 

  • Ghiglieri G, Carletti A, Pittalis D (2014) Runoff coefficient and average yearly natural aquifer recharge assessment by physiography-based indirect methods for the island of Sardinia (Italy) and its NW area (Nurra). J Hydrol 519:1779–1791

    Article  Google Scholar 

  • Guntner A, Uhlenbrook S, Seibert J, Leibundgut C (1999) Multi-criterial validation of TOPMODEL in a mountainous catchment. Hydrol Process 13(11):1603–1620

    Article  Google Scholar 

  • Horton RE (1932) Drainage Basin characteristics. Trans Am Geophys Union 13:350–361

    Article  Google Scholar 

  • James AL, Roulet NT (2009) Antecedent moisture conditions and catchment morphology as controls on spatial patterns of runoff generation in small forest catchments. J Hydrol 377(3):351–366

    Article  Google Scholar 

  • Jordan G (2007) Adaptive smoothing of valleys in DEMs using TIN interpolation from ridgeline elevations: an application to morphotectonic aspect analysis. Comput Geosci 33(4):573–585

    Article  Google Scholar 

  • Jyrkama MI, Sykes JF (2007) The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario). J Hydrol 338(3):237–250

    Article  Google Scholar 

  • Kabo-bah AT, Anornu GK, Ofosu E, Andoh R, Lis KJ (2014) Spatial-temporal estimation of evapotranspiration over Black Volta of West Africa. Int J Water Res Environ Eng 6(12):295–302

    Article  Google Scholar 

  • Kalyanapu AJ, Burian SJ, McPherson TN (2010) Effect of land use-based surface roughness on hydrologic model output. JOSH 9(2):51–71

    Google Scholar 

  • Kendy E, Gerard Marchant P, Todd Walter M, Zhang Y, Liu C, Steenhuis TS (2003) A soil water balance approach to quantify groundwater recharge from irrigated cropland in the North China Plain. Hydrol Process 17(10):2011–2031

    Article  Google Scholar 

  • Lee CH, Yeh HF, Chen JF (2008) Estimation of groundwater recharge using the soil moisture budget method and the base-flow model. Environ Geol 54(8):1787–1797

    Article  Google Scholar 

  • Liu QQ, Chen L, Li JC (2001) Influences of slope gradient on soil erosion. Appl Math Mech Eng 22(5):510–519

    Article  Google Scholar 

  • Losjo K, Johansson B, Bringfelt B, Oleskog I, Bergstroem S (1999) Groundwater recharge-climatic and vegetation induced variations. Simulations in the Emaan and Aespoe areas in southern Sweden. Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden). Technical report TR-99-01

  • Manfreda S, Fiorentino M, Iacobellis V (2005) DREAM: a distributed model for runoff, evapotranspiration, and antecedent soil moisture simulation. Adv Geosci 2(2):31–39

    Article  Google Scholar 

  • Merz R, Blöschl G, Parajka J (2006) Spatio-temporal variability of event runoff coefficients. J Hydrol 331(3):591–604

    Article  Google Scholar 

  • Milville F (1991) Etude Hydrodynamique et Quantification de la Recharge des Aquifères en Climat Soudano-Sahélien: application à un Bassin Expérimental au Burkina Faso. In: Soil water balance in the Sudano-Sahelian Zone, proceedings of an international workshop, Niamey, 18.23.02.1991, IAHS Press, Wallingford, IAHS, vol 199, pp 311–328

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1979) River flow forecasting through conceptual models 1: a discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • NURP US EPA (1983) Results of the Nationwide Urban Runoff Program. Vol 1-Final report. Water Planning Division, NTIS PB84-18552, Washington DC

  • Pilgrim DH, Chapman TG, Doran DG (1988) Problems of rainfall-runoff modeling in arid and semiarid regions. Hydrol Sci J 33(4):379–400

    Article  Google Scholar 

  • Pistocchi A, Bouraoui F, Bittelli M (2008) A simplified parameterization of the monthly topsoil water budget. Water Resour Res 44:W12440. doi:10.1029/2007WR006603

    Article  Google Scholar 

  • Reuter HI, Nelson A, Jarvis A (2007) An evaluation of void filling interpolation methods for SRTM data. IJGIS 21(9):983–1008

    Google Scholar 

  • Rodgers C, Van de Giesen N, Laube W, Vlek PL, Youkhana E (2006) The GLOWA Volta Project: a framework for water resources decision-making and scientific capacity building in a transnational West African basin. In Integrated assessment of water resources and global change. Water Resour Manag 21:295–313

  • Rodier J, Ribstein P (1988) Estimation of floods in small Sahelian basins under 10 km2. In french: estimation des caractéristiques de la crue decennale pour les petits basins versants du Sahel couvrant de 1 a 10 km2. ORSTOM, Montpellier, p 108

    Google Scholar 

  • Saxton KE, Rawls WJ (2006) Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci Soc Am J 70(5):1569–1578

    Article  Google Scholar 

  • Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10(1):18–39

    Article  Google Scholar 

  • Shaibu S, Odai SN, Adjei KA, Osei EM, Annor FO (2012) Simulation of runoff for the Black Volta Basin using satellite observation data. JRBM 10(3):245–254

    Google Scholar 

  • Sutanto SJ, Wenninger J, Coenders-Gerrits AMJ, Uhlenbrook S (2012) Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model. Hydrol Earth Syst Sc 16(8):2605–2616. doi:10.5194/hess-16-2605-2012

    Article  Google Scholar 

  • Turc L (1955) Le bilan de l’aue des sols. Relations entre les precipitations, l’evaporation et l’ecoulement, INRA, Paris

  • USDA-NRCS (1985) National Engineering Handbook, Section 4—Hydrology. United States Department of Agriculture—Natural Resources Conservation Services, Washington, DC: USDA-SCS

  • USDA-NRCS Soil Survey Division (1993) Soil survey manual. U.S. Department of Agriculture Handbook No. 18, U.S. Government Printing Office, Washington, DC, pp 437–1036

  • Van de Giesen N, Andreini N, Van Edig A, Vlek P (2001) Competition for water resources of the Volta Basin. In: Regional management of water resources: proceedings of a symposium held during the sixth IAHS Scientific Assembly at Maastricht, vol 268, The Netherlands, July 2001. IAHS, pp 199–206

  • Wang ZM, Batelaan O, De Smedt F (1996) A distributed model for water and energy transfer between soil, plants and atmosphere (WetSpa). Phys Chem Earth 21(3):189–193

    Article  Google Scholar 

  • Wang QJ, Pagano TC, Zhou SL, Hapuarachchi HAP, Zhang L, Robertson DE (2011) Monthly versus daily water balance models in simulating monthly runoff. J Hydrol 404(3):166–175

    Article  Google Scholar 

  • Wang Y, Lei X, Liao W, Jiang Y, Huang X, Liu J, Wang H (2012) Monthly spatial distributed water resources assessment: a case study. Comput Geosci 45:319–330

    Article  Google Scholar 

  • Wei L, Zhang B, Wang M (2007) Effects of antecedent soil moisture on runoff and soil erosion in alley cropping systems. Agric Water Manag 94(1):54–62

    Article  Google Scholar 

  • Willems P (2009) A time series tool to support the multi-criteria performance evaluation of rainfall-runoff models. Environ Model Softw 24(3):311–321

    Article  Google Scholar 

  • World Bank Group (2001) World Development Report 2000/2001. Attacking Poverty. World Development Report, New York: Oxford University Press. World Bank. https://openknowledge.worldbank.org/handle/10986/11856

  • Wu J, Zhang R, Yang J (1996) Analysis of rainfall-recharge relationships. J Hydrol 177(1):143–160

    Article  Google Scholar 

  • Xu CY, Singh VP (1998) A review on monthly water balance models for water resources investigations. Water Resour Manag 12(1):20–50

    Article  Google Scholar 

  • Zehe E, Becker R, Bárdossy A, Plate E (2005) Uncertainty of simulated catchment runoff response in the presence of threshold processes: role of initial soil moisture and precipitation. J Hydrol 315(1):183–202

    Article  Google Scholar 

  • Zhang X, Lindstrom G (1997) Development of an automatic calibration scheme for the HBV hydrological model. Hydrol Process 11(12):1671–1682

    Article  Google Scholar 

  • Zhang L, Potter N, Hickel K, Zhang Y, Shao Q (2008) Water balance modeling over variable time scales based on the Budyko framework–Model development and testing. J Hydrol 360(1):117–131

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editors and reviewers for their helpful comments. We also thank all data providers namely Ben Ampomah (Water Resources Commission Ghana), for providing the river flow data, Elikem Setsofia (Ghana Meteorological Agency) for providing the climatic data, Modibo Samba Coulibaly (Agence de la Météorologie Nationale du Mali) for climatic data of Mali, Direction de la Météorologie du Burkina Faso for the climatic data of Burkina Faso.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khodayar Abdollahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdollahi, K., Bashir, I., Verbeiren, B. et al. A distributed monthly water balance model: formulation and application on Black Volta Basin. Environ Earth Sci 76, 198 (2017). https://doi.org/10.1007/s12665-017-6512-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6512-1

Keywords

Navigation