Skip to main content

Advertisement

Log in

Stable isotopes, carbon-14 and hydrochemical composition from a basaltic aquifer in São Paulo State, Brazil

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The Cretaceous Serra Geral Aquifer (SGA) is contained within one of the largest continental flood basalts in the world, reaching a thickness up to 1700 m in the center of the Paraná Basin. The SGA is one of the most important groundwater reservoirs in northeastern São Paulo State (Brazil), responsible for water supply to cities and agriculture. In order to evaluate the geochemical and isotopic evolution of SGA, as well as to determine the mean residence time, a groundwater sampling campaign was carried out over the SGA in São Paulo State (Brazil) from January to April 2013. Two main hydrochemical facies were recognized: Ca–Mg–HCO3 related to water–rock interaction reactions in basaltic outcrop, such as mineral dissolution due to atmospheric CO2 uptake, and alkaline Na–HCO3 groundwater, evolved from mixing with groundwater from the underlying Guarani Aquifer System. Stable isotope (δ18O and δ2H) ratios range from −8.87 to −5.32‰ VSMOW and −61.31 to −31.64‰ VSMOW, respectively, closely following the GMWL. Spatial and temporal variations in isotope ratios are associated with the South Atlantic convergence zone activities and the type of rain responsible for recharge. Values for δ13C vary from −21.53 to −7.11‰ VPDB, while 14C activities vary from 1.2 pcm to more than 100 pcm, presenting a trend to enrichment and decrease in 14C activities westward, concordant with the regional groundwater flow direction. Most recent groundwaters have δ13C ratio contents mostly consistent with C3 plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Local geological base map modified from DAEE/UNESP 1980)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abid K, Ammar FH, Weise S, Zouari K, Chkir N, Rozanski K, Osenbrük K (2014) Geochemistry and residence time estimation of groundwater from Miocene-Pliocene and Upper Cretaceous aquifers of southern Tunisia. Quat Int 338:59–70

    Article  Google Scholar 

  • Aggarwal PK, Gat JR, Froehlich KFO (2005) Isotopes in the water cycle—past present and future of a developing science. Springer, Netherlands

    Google Scholar 

  • Aggarwal PK, Matsumoto T, Sturchio NC, Chang HK, Gastmans D, Araguás-Araguás LJ, Jiang W, Lu ZT, Mueller P, Yokochi R, Purtschert R, Torgersen T (2015) Continental degassing of 4He by surficial discharge of deep groundwater. Nat Geosci 8:35–39. doi:10.1038/ngeo2302

    Article  Google Scholar 

  • Aggarwal PK, Romastschke U, Araguás-Araguás LJ, Belachew D, Longstaffe FJ, Berg P, Schumacher C, Funk A (2016) Proportions of convective and stratiform precipitation revealed in water isotope ratios. Nat Geosci 9:624–629

    Article  Google Scholar 

  • Alemayehu T, Leis A, Eisenhauer A, Dietzel M (2011) Multi-proxy approach (2H/H, 18O/16O, 13C/12C and 87Sr/86Sr) for the evolution of carbonate-rich groundwater in basalt dominated aquifer of Axun area, northern Ethiopia. Chem Erde-Geochem 71:177–187. doi:10.1016/jchemer.2011.02.007

    Article  Google Scholar 

  • Bellieni G, Comin-Chiaromonti P, Marques LS, Melfi AJ, Nardy AJ, Papatrechas C, Piccirilo EM, Roisemberg A (1986) Petrogenetic aspects of acid and basaltic lavas from the Paraná Plateau (Brazil): Geological, mineralogical and petrochemical relationships. J Petrol 27:915–944

    Article  Google Scholar 

  • Bertolo R, Hirata R, Sracek O (2006) Geochemistry and geochemical modeling of unsaturated zone in tropical region in Urânia, São Paulo state, Brazil. J Hydrol 329:49–62

    Article  Google Scholar 

  • Betheke CM, Johnson TM (2008) Groundwater age and groundwater age dating. Annu Rev Earth Planet Sci. doi:10.1146/annurev.earth.36.031207.124210

    Article  Google Scholar 

  • Bittencourt AVL, Rosa Filho EF, Hindi EC, Buchmann Filho AC (2003) A influência dos basaltos e de misturas com águas de aquíferos sotopostos nas águas subterrâneas do Sistema Aquífero Serra Geral na Bacia do Rio Piquiri. Paraná – BR (The influence of the basalts and mixing with water from underlying aquifers in groundwater from Serra Geral Aquifer System – in portuguese). Rev Ag Sub. doi:10.14295/ras.v17i1.1313

    Article  Google Scholar 

  • Blaser PC, Coetsiers M, Aeschbach-Hertig W, Kipfer R, Van Camp M, Loosli HH, Walraevens K (2010) A new groundwater radiocarbon correction approach for paleoclimate conditions during recharge and hydrochemical evolution: the Ledo-Paniselian Aquifer, Belgium. Appl Geochem 25:437–455

    Article  Google Scholar 

  • Boff FE, Medeiros MA, Muller AL, Koppe, JC (2006) Caracterização hidroquímica das águas minerais da Serra do Nordeste Gaúcho (Hydrochemical characterization of mineral water from Serra do Nordeste Gaúcho—in portuguese). In: Proceedings of XIV Brazilian Groundwater Congress, Curitiba (PR)

  • Bowen GJ (2008) The online isotopes in precipitation calculator, version 2.2. http://www.waterisotopes.org. Cited 10 Apr 2015

  • Bretzler A, Osenbrück K, Gloaguen R, Ruprecht J, Kebede S, Stadler S (2011) Groundwater origin and flow dynamics in active rift systemd—a multi-isotope approach in the Main Ethiopian Rift. J Hydrol 402:274–289

    Article  Google Scholar 

  • Campos HCNS (1993) Caracterização e cartografia das províncias hidrogeoquímicas do Estado de São Paulo (Characterization and cartography of hydrogeochemical provinces of São Paulo state—in portuguese). Ph.D. thesis, Geosciences Institute—University of São Paulo, São Paulo-SP-Brazil

  • CETESB (São Paulo) (2013) Qualidade das águas subterrâneas no estado de São Paulo (Quality of groundwater from São Paulo state—in portuguese). http://www.cetesb.sp.gov.br/agua/aguas-subterraneas/111-publicacoes-e-relatorios. Cited 04 May 2015

  • Chang HK, Aravena R, Gastmans D, Hirata R, Manzano M, Vives L, Rodrigues L, Aggarwal P, Araguás-Araguás L (2013) Role of isotopes in the development of a general hydrogeological conceptual model of the Guarani Aquifer (GAS). In: International Atomic Energy Agency. (Org.) (ed) Isotopes in hydrology, marine ecosystems and climate change studies, 1ed, vol 1. Viena, International Atomic Energy Agency, pp 281–290

    Google Scholar 

  • Chang HK, Dias RG, Stradioto MR, Hespanhol E, Aggarwal PK, Araguás L (2015) Preliminary integrated δ18O map of groundwater of three major aquifer systems, south-central region of Brazil. In: Proceedings of international symposium on isotope hydrology—revisiting foundations and exploring frontiers, Vienna (AU)

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, Boca Raton

    Google Scholar 

  • Clemente CA, Azevedo AC (2007) Mineral weathering in acid saprolites from Subtropical, Southern Brazil. Sci Agric (Piracicaba, Brazil) 64(6):601–607

    Article  Google Scholar 

  • Coetsiers M, Walraevens K (2009) A new correction model for 14C ages in aquifers with complex geochemistry—application to the Neogene Aquifer, Belgium. Appl Geochem 24:768–776

    Article  Google Scholar 

  • Cruz FW, Karmann I, Viana O Jr, Burns SJ, Ferrari JA, Vuille M, Sial AN, Moreira MZ (2005) Stable isotope study of cave percolation waters in subtropical Brazil: implications for paleoclimate inferences from speleothems. Chem Geol 220:245–262

    Article  Google Scholar 

  • DAEE (Departamento de Águas e Energia Elétrica do Estado de São Paulo) (1974) Estudos de Águas Subterrâneas. Região Administrativa 6 – Ribeirão Preto (Groundwater Studies. Administrative Region 6 – Ribeirão Preto – in portuguese). São Paulo: DAEE. Vol.2

  • DAEE (Departamento de Águas e Energia Elétrica do Estado de São Paulo) (1976) Estudos de Água Subterrânea – Regiões Administrativas 7, 8, 9 (Bauru, São José do Rio Preto, Araçatuba) (Groundwater Studies. Administrative Region 7, 8 and 9 (Bauru, São José do Rio Preto, Araçatuba) – in portuguese). São Paulo: DAEE. Vol.2, 286p

  • DAEE/UNESP (1980) Mapa Geológico do Estado de São Paulo (Geological Map of São Paulo state) scale 1:250.000

  • Dafny E, Burg A, Gvirtzman H (2006) Deduction of groundwater flow regime in a basaltic aquifer using geochemical and isotopic data: The Golan Heights, Israel case study. J Hydrol 330:506–524

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Article  Google Scholar 

  • Deutsch WJ, Jenne EA, Krupka KM (1982) Solubility equilibria in basalt aquifers: The Columbia Plateau, Eastern Washington, USA. Chem Geol 36:15–34

    Article  Google Scholar 

  • Domenico PA, Schwartz FW (1998) Physical and chemical hydrogeology. Wiley, Hoboken

    Google Scholar 

  • Ernesto M, Raposo MIB, Marques LS, Renne PR, Diogo LA, De Min A (1999) Paleomagnetism, geochemistry and 40Ar/39Ar Dating of the Northeastern Paraná Magmatic Province: tectonic implications. J Geodyn 28:321–340

    Article  Google Scholar 

  • Fernandes AJ, Maldaner CH, Sobrinho JMA, Pressinotti MMN, Wahnfried I (2010) Estratigrafia dos derrames de basaltos da Formação Serra Geral (Ribeirão Preto-SP) baseada na geologia física, petrografia e geoquímica (Stratigraphy of basaltic lava flow from Serra Geral Formation (Ribeirão Preto-SP) based on physical geology, petrography and geochemistry – in portuguese). Ver Inst Geoc – USP 10(2):73–99

    Google Scholar 

  • Fontes JC, Garnier JM (1979) Determination of the initial 14C activity of the total dissolved carbon: a review of the existing models and a new approach. Water Resour Res 15:399–413

    Article  Google Scholar 

  • Fournier RO (1977) Chemical geothermometers and mixing models for geothermal systems. Geothermics 5(1–4):41–50

    Article  Google Scholar 

  • Gallo G, Sinelli O (1980) Estudo hidroquímico e isotópico das águas subterrâneas na região de Ribeirão Preto (SP) (. Rev Bras Geociênc 10:129

    Article  Google Scholar 

  • Gastmans D, Chang H.K. (2012) Circulação das Águas Subterrâneas do Sistema Aquífero Guarani nas Proximidades da Zona de Afloramentos no Estado de São Paulo (Guarani Aquifer System groundwater circulation pattern in the vicinity of outcrop zone in São Paulo state—in portuguese). In: Proceedings of XVII Brazilian Groundwater Congress Bonito(MS)

  • Gastmans D, Chang HK, Hutcheon I (2010a) Groundwater geochemical evolution in the northern portion of the Guarani Aquifer (Brazil) and its relationship to diagenetic features. Appl Geochem. doi:10.1016/j.apgeochem.2009.09.024

    Article  Google Scholar 

  • Gastmans D, Chang HK, Hutcheon I (2010b) Stable isotopes (δ2H, δ18O and δ13C) in groundwaters from the northwestern portion of the Guarani Aquifer System (Brazil). Hydrogeol J. doi:10.1007/s10040-010-0612-2

    Article  Google Scholar 

  • Gastmans D, Hutcheon I, Menegário AA, Chang HK (2016) Geochemical evolution of groundwater in a basaltic aquifer based on chemical and stable isotopic data: case study from the Northeastern portion of Serra Geral Aquifer, São Paulo state (Brazil). J Hydrol 535:598–611. doi:10.1016/j.jhydrol.2016.02.016

    Article  Google Scholar 

  • Glynn PD, Plummer LN (2005) Geochemistry and understanding of groundwater systems. Hydrogeol J 13:263–287

    Article  Google Scholar 

  • Han LF, Plummer LN (2013) Revision of Fontes & Garnier’s model for the initial 14C content of dissolved inorganic carbon used in groundwater dating. Chem Geol 351:105–114. doi:10.1016/j.chemgeo.2013.05.011

    Article  Google Scholar 

  • Hirata R, Gesicki A, Sracek O, Bertolo R, Giannini PC, Aravena A (2011) Relation between sedimentary framework and hydrogeology in the Guarani Aquifer System in São Paulo state, Brazil. J South Am Earth Sci 31(4):444–456

    Article  Google Scholar 

  • IAEA/WMO (2006) Global network of isotopes in precipitation: the GNIP database. IAEA/WMO, Vienna. http://isohis.iaea.org. Cited Apr 22 2013

  • Kimmelmann e Silva AA, Silva, RBG, Rebouças AC, Santiago MMF. (1986) Hidrologia Isotópica do Aqüífero Botucatu – Bacia do Paraná – Brasil (Isotopic hydrology of Botucatu Aquifer-Paraná Basin-Brazil—in portuguese). In: Proceedings of IV Brazilian Groundwater Congress, Brasília (DF)

  • Kimmelmann e Silva AA, Foster M, Coelho R (1994) Environmental isotope and hydrogeochemical investigation os Bauru and Botucatu aquifers, Paraná Basin, Brazil. Estudios de hidrogeologia isotópica en América Latina, IAEA, Vienna, Tec. Doc. 835

  • Kulogoski JT, Hilton DR, Cresswell RG, Hostetler S, Jacobson G (2008) Helium-4 characteristics of groundwater from Central Australia: comparative chronology with chlorine-36 and carbon-14 dating techniques. J Hydrol 348:176–194

    Article  Google Scholar 

  • Lastoria G, Sinelli O, Chang HK, Hutcheon I, Paranhos Filho AC, Gastmans D (2006) Hidrogeologia da Formação Serra Geral no Estado de Mato Grosso do Sul (Serra Geral formation hydrogeology in Mato Grosso do Sul state—in portuguese). Rev Ag Sub. doi:10.14295/ras.v20i1.9727

    Article  Google Scholar 

  • Léonardi V, Arthaud F, Grillot JC, Avetissian V, Bochnaghian P (1996) Modélisation d’un aquifère basaltique fracturé tenant comptes de données géologiques, climatiques et hydrauliques: cas de Basaltes Perchés de Garni (Arménie) (Modelling of fractured basaltic aquifer based on geological, climatic and hydraulic data: case of. Basaltes Perchés de Garni (Arménie)—in french. J Hydrol 179:87–109

    Article  Google Scholar 

  • Locsey KL, Cox ME (2003) Statistical and hydrochemical methods to compare basalt and basement rock hosted groundwaters: atherton Tablelands, Northeastern Australia. Environ Geol 43:698–713

    Article  Google Scholar 

  • Machado FB, Nardy AJR, Oliveira MAF (2007) Geologia e aspectos petrológicos das rochas intrusivas e efusivas Mesozóicas de parte da borda Leste da Bacia do Paraná no Estado de São Paulo (Geology and petrological aspects of Mesozoic intrusive and efusefe rocks in a portion of the East bord of Paraná Basin in São Paulo state – in portuguese). Rev Bras Geoc 37(1):64–80

    Article  Google Scholar 

  • Milani EJ, França AB, Schneider RL (1994) Bacia do Paraná (Paraná Sedimentary Basin—in portuguese). Bol Geoc Petrol 8(1):69–82

    Google Scholar 

  • Mook WG (1980) The dissolution-exchange model for dating groundwater with 14C. In: Fritz P, Fontes JC (eds) Handbook of environmental isotopes geochemistry, vol 1. Elsevier, Amsterdam, pp 55–74

    Google Scholar 

  • Nardy AJR, Oliveira MAF, Betancourt RHS, Verdugo DRH, Machado FB (2002) Geologia e Estratigrafia da Formação Serra Geral (Geology and stratigraphy of Serra Geral formation—in portuguese). Rev Geoc 21(2):15–32

    Google Scholar 

  • OAS (Organization of American States) (2009) Aquífero Guarani: programa estratégico de ação - Acuífero Guarani: programa estratégico de acción - Edição bilíngue - Brasil; Argentina; Paraguai, Uruguai (Guarani Aquifer - Strategic Actions Program - Bilingual edition, in portuguese and spanish), p 424

  • Parkhurst DL, Appelo P (1999) User’s guide to PHREEQC (version 2)—A computer program for speciation, speciation, batch-reaction, one-dimensional transport and inverse geochemical calculations: U.S. Geological Survey Water-Resources Investigations Report 99-4259, Denver

  • Parkhurst DL, Charlton SR (2008) NetpathXL—an Excel® Interface to the program NETPATH. U.S. In: Geological survey techniques and methods 6–A26, p 11

  • Pearson FJ (1965) Use of C-13/C-12 ratios to correct radiocarbon ages of material initially diluted by limestone. In: Proceedings 6th international conference on radiocarbon and tritium dating, Pullman, Washington, pp 357–366

  • Plummer LN, Glynn PD (2013) Radiocarbon dating in groundwater systems. In: IAEA (ed) Isotope methods for dating old groundwater. pp 35–89

  • Plummer LN, Busby JF, Lee RW, Hanshaw BB (1990) Geochemical modeling of the Madison Aquifer in parts of Montana, Wyoming and South Dakota. Water Resour Res 26(9):1981–2014

    Article  Google Scholar 

  • Plummer LN, Prestemon EC, Parkhurst DL (1994) An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH, version 2.0: U.S. In: Geological survey water-resources investigations report 94–4169, p 130

  • Rebouças AC, Fraga CG (1988) Hidrogeologia das rochas vulcânicas do Brasil (Hydrogeology of vulcanic rocks in Brazil—in portuguese). Rev Bras Águas Sub 12:29–55

    Google Scholar 

  • Renne PR, Ernesto M, Pacca IG, Coe RS, Glen JM, Prévot M, Perrin M (1992) The age of Paraná flood volcanism, rifting of Gondwanaland, and the Jurassic-Cretaceous boundary. Science 258:975–979

    Article  Google Scholar 

  • Renne PR, Deckart K, Ernesto M, Féraud G, Piccirillo EM (1996) Age of the Ponta Grossa dike swarm (Brazil), and implications to Paraná flood volcanism. Earth Planet Sci Lett 144:199–211

    Article  Google Scholar 

  • Rimstidt JD (1997) Quartz solubility at low temperatures. Geochim Cosmochim Ac 61:2553–2558

    Article  Google Scholar 

  • Rimstidt JD, Barnes HL (1977) The kinetics of silica–water reactions. Geothermics 5(1–4):41–50

    Google Scholar 

  • Rimstidt JD, Barnes HL (1980) The kinetics of silica–water reactions. Geochim Cosmochim Acta 44:1683–1699

    Article  Google Scholar 

  • Rosanski K, Araguás-Araguás L (1995) Spatial and temporal variability of stable isotope composition of precipitation over the South American continent. Bull Inst Franc Études Andines 24(3):379–390

    Google Scholar 

  • Rosenthal E, Jones BF, Weinberger G (1998) The chemical evolution of Kurnub Group paleowater in Sinai-Negev province—a mass balance approach. Appl Geochem 13(5):553–569

    Article  Google Scholar 

  • Scheiber L, Ayora C, Vázquez-Suñé E, Cendrón DI, Soler A, Custodio E, Baquero JC (2015) Recent and old groundwater in the Nieba-Posadas regional aquifer (southern Spain): implications for its management. J Hydrol 523:624–635

    Article  Google Scholar 

  • Scherer CMS (2000) Eolian dunes of Botucatu formation (Cretaceous) in Southernmost Brazil: morphology and origin. Sediment Geol 137:63–84

    Article  Google Scholar 

  • Silva RBG (1983) Estudo Hidroquímico e isotópico do Aquífero Botucatu no Estado de São Paulo (Hydrochemical and isotopic study of Botucatu aquifer in São Paulo state, in portuguese) PHD Thesis. Geosciences Institute—University of São Paulo, São Paulo-SP-Brazil

  • Sracek O, Hirata R (2002) Geochemical and stable isotopic evolution of the Guarani Aquifer in the State of São Paulo, Brazil. Hydrogeol J 10:643–655

    Article  Google Scholar 

  • Tamers MA (1975) Validity of radiocarbon dates on groundwater. Geophys Surv 2:217–239

    Article  Google Scholar 

  • Vuille M, Werner M (2005) Stable isotopes in precipitation recording South American summer monsoon and ENSO variability: observations and model results. Clim Dyn 25:401–413

    Article  Google Scholar 

  • Vuille M, Bradley RS, Werner M, Healy R, Keimig F (2003) Modeling δ18O in precipitation over the tropical Americas: 1. Interannual variability and climatic controls. J Geophys Res. doi:10.1029/2001JD002038

    Article  Google Scholar 

  • Wahnfried I (2010). Modelo Conceitual de Fluxo do Aquitarde Serra Geral e do Sistema Aquífero Guarani na Região de Ribeirão Preto (SP) (Serra Geral aquitard and Guarani Aquifer System concetual flow model in the region of Ribeirão Preto (SP)—in portuguese). Ph.D. thesis Geosciences Institute—University of São Paulo, São Paulo-SP-Brazil

  • Zalán PV, Wolf S, Conceição JCJ, Marques A, Astolfi MAM, Vieira IS, Appi VT, Zanotto AO (1986) Bacia do Paraná (Paraná Basin—in portuguese). In: Rajagabaglia GP and Milani EJ Origem e Evolução de Bacias Sedimentares (Origin and evolution of Sedimentary Basins) Bol Téc Petrobras

Download references

Acknowledgements

This project was funded by a grant from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) under the process 2012/00241-5. Authors wish to acknowledge Dr. James W. LaMoreaux, editor in chief of Environmental Earth Sciences, and two anonymous reviewers for suggesting significant improvements to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Gastmans.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gastmans, D., Menegário, A.A. & Hutcheon, I. Stable isotopes, carbon-14 and hydrochemical composition from a basaltic aquifer in São Paulo State, Brazil. Environ Earth Sci 76, 150 (2017). https://doi.org/10.1007/s12665-017-6468-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6468-1

Keywords

Navigation