Skip to main content

Advertisement

Log in

Distribution and genesis of the eastern Tibetan Plateau geothermal belt, western China

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

More than 185 hot springs have been recently discovered in the eastern Tibetan Plateau geothermal belt (also called the Kangding–Litang–Batang geothermal belt) (98–102°E, 28–32°N). Among them, more than 60% of springs have temperatures of >40 °C, and 11 springs have temperature higher than the local water boiling point. These hot springs are mostly exposed near the fault or valley areas, as bandings in reservoirs of Triassic carbonate rocks and clastic quartz sandstone or in fractured granite and intrusive rocks. The geothermal belt can be subdivided into the Batang–Xiangcheng geothermal field, the Ganzi–Litang geothermal field, and the Luhuo–Kangding geothermal field, which are controlled by the Jinsa fault, Xiangcheng fault, Litang fault, and Xianshuihe fault, respectively. Radiogenic heat from the Mesozoic and Cenozoic granites, possible ductile crustal flow beneath the lower crust, and frictional heat generated by active strike-slipping along faults are the significant heat resources for the geothermal genesis. Frictional heat caused by the slipping along the Xianshuihe fault is the main thermal source for the Luhuo–Kangding geothermal field, whereas magma melting heat is the main source for the Batang–Xiangcheng geothermal field. Glacier water and river water are the main water supply sources, and the fracture serves as the main channel for runoff and hot water flow. The activity intensity and magnitude of the Kangding–Litang–Batang geothermal anomaly were lower than those of the geothermal fields of Yangbajing and Tengchong in the central and southern Tibetan Plateau, respectively, which indicates that the eastern Tibetan Plateau has a strong heat flow background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aero Geophysics and Remote Sensing center (AGRS) (2011) The report of 1:200000 magnetic field in the middle of the key metallogenic belt in the southwest of Sanjiang. China Geological Survey Report, Beijing

  • Bai DH, Liao ZJ, Zhao GZ, Wang BX (1994) Heat resources of the Rehai geothermal field, evidence from the MT. Chin Sci Bull 39:47–348

  • Bai DH, Unsworth MJ, Meju MA, Ma XB, Teng JW, Kong XR et al (2010) Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nat Geosci 3:358–362

    Article  Google Scholar 

  • Burchfield BC, Chen Z, Liu Y, Royden LH (1995) Tectonics of the Longmen Shan and adjacent regions, Central China. Int Geol Rev 37:661–735

    Article  Google Scholar 

  • Chen SF, Wilson CJL (1996) Emplacement of the Longmen Shan Thrust—Nappe Belt along the eastern margin of the Tibetan Plateau. J Struct Geol 18:413–440

    Article  Google Scholar 

  • Chen Z, Du JG, Zhou XC, Yi L et al (2014) Hydrochemistry of the Hot Springs in Western Sichuan Province Related to the Wenchuan 8.0 Earthquake. Sci World J 2014:1–13

  • Chen SF, Wilson CJL, Worley BA (1995) Tectonic transition from the Songpan–Ganzi Fold Belt to the Sichuan Basin, south-western China. Basin Res 7:235–253

    Article  Google Scholar 

  • Chung SL, Chu MF, Zhang Y, Xie Y, Lo CH, Lee TY, Lan CY, Li X, Zhang Q, Wang Y (2005) Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth Sci Rev 68(3–4):173–196

  • Chung SL, Lo CH, Lee TY, Zhang YQ, Xie YW, Li XH, Wang KL, Wang PL (1998) Diachronous uplift of the Tibetan plateau starting 40 Myr ago. Nature 394:769–773

    Article  Google Scholar 

  • Cloetingh S, Wortel R (1986) Stress in the Indo-Australian plate. Tectonophysics 132:49–67

    Article  Google Scholar 

  • Copley A, Avouac JP, Royer JY (2010) India-Asia collision and the Cenozoic slowdown of the Indian plate: implications for the forces driving plate motions. J Geophys Res. doi:10.1029/2009JB006634

    Google Scholar 

  • Deng J, Wang CM, Santosh M (2014) Orogenesis and metallogenesis in the Sanjiang Tethyan domain, China: preface. Gondwana Res 26:415–418

    Article  Google Scholar 

  • Dewey JF, Shackleton RM, Chang CF et al (1988) The tectonic development of the Tibetan plateau. Philos Trans R Soc Lond A 327:379–413

    Article  Google Scholar 

  • Ding L, Zhong DL, Yin A, Kapp P, Harrison TM (2001) Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth Planet Sci Lett 192:423–438

    Article  Google Scholar 

  • Enkin R, Yang Z, Chen Y, Courtillot V (1992) Paleomagnetic constraints on the geodynamics history of the major blocks of china from the Permian to the present. J Geophys Res 97:13953–13989

    Article  Google Scholar 

  • Gao LJ, Zhang J, Dong M (2015) The study of gravity-magnetic anomaly and tectonic background in Sichuan west region. Chin J Geophys 58:2996–3008

    Google Scholar 

  • Harrowfield MJ, Wilson CJL (2005) Indosinian deformation of the Songpan–Ganzi fold belt, northeast Tibetan Plateau. J Struct Geol 27:101–117

    Article  Google Scholar 

  • He HL, Yasutaka I, He YL, Masayoshi T, Chen J, Chen CY (2008) Newly-generated Daliangshan fault zone—shortcutting on the central section of Xianshuihe–Xiaojiang fault system. Sci China Ser D Earth Sci 38:564–574. doi:10.1007/s11430-008-0094-4

    Google Scholar 

  • He JK, Lu SJ, Wang XG (2009) Mechanical relation between crustal rheology, effective fault friction, and strike-slip partitioning among the Xiaojiang fault system, southeastern Tibet. J Asian Earth Sci 34:363–375

    Article  Google Scholar 

  • He DF, Zhu WG, Zhong H, Ren T, Bai ZJ, Fan HP (2013) Zircon U–Pb geochronology and elemental and Sr–Nd–Hf isotopic geochemistry of the Daocheng granitic pluton from the Yidun Arc, SW China. J Asian Earth Sci 67–68:1–17

    Google Scholar 

  • Hou ZQ, Mo XX, Tan J, Hu S, Luo Z (1993) The eruption sequences of basalts in the Yidun island arc, Sanjiang region and evolution of rift to island arc. Bull Chin Acad Geol Sci 26:49–67

    Google Scholar 

  • Hu SB, He LJ, Wang JY (2000) Heat flow in the continental area of China: a new data set. Earth Planet Sci Lett 179(2):407–419

    Article  Google Scholar 

  • Huang SP (1992) Variations of heat flow and crustal thickness in the continental area of China. Acta Geophys Sin 35:441–450

    Google Scholar 

  • Huang JL, Zhao DP, Zhen SH (2001) Seismic tomography of the Sichuan–Yunnan active tectonic region. Chin J Geophys 44:31–64

    Google Scholar 

  • Huang MH, Buick IS, Hou LW (2003) Tectonometamorphic evolution of the Eastern Tibet Plateau: evidence from the Central Songpan–Garzê Orogenic Belt, Western China. J Petrol 44:255–278

    Article  Google Scholar 

  • Huang XM, Du Y, He ZT, Ma BQ, Xie FR (2015) Late Pleistocene–Holocene paleoseismology of the Batang fault (central Tibet plateau, China). Geomorphology 239:127–141

    Article  Google Scholar 

  • Kincaid C, Silver P (1996) The role of viscous dissipation in the orogenic process. Earth Planet Sci Lett 142(3–4):271–288

    Article  Google Scholar 

  • Lai QZ, Ding L, Wang HW, Yue YH, Cai FL (2006) Thermal history control of apatite fission track thermal history in the eastern boundary of Tibetan Plateau. Sci China Ser D Earth Sci 36:785–796

    Google Scholar 

  • Langelier WF, Ludwig HF (1942) Graphical methods for indicating the mineral character of natural waters. J Am Water Works Assoc 34:335

    Google Scholar 

  • Li H, Zhang Y (2013) Zircon U–Pb geochronology of the Konggar granitoid and migmatite: constraints on the Oligo–Miocene tectono-thermal evolution of the Xianshuihe fault zone, East Tibet. Tectonophysics 606:127–139

    Article  Google Scholar 

  • Li HL, Zhang YQ, Zhang CH, Dong SW, Zhu FS (2015a) Middle Jurassic syn–kinematic magmatism, anataxis and metamorphism in the Zheduo–Gonggar massif, implication for the deformation of the Xianshuihe fault zone, East Tibet. J Asian Earth Sci 107:35–52

    Article  Google Scholar 

  • Li YL, Wang CS, Dai JG, Xu GQ, Hou YL, Li XH (2015b) Propagation of the deformation and growth of the Tibetan–Himalayan Orogen: a review. Earth Sci Rev 143:36–61

    Article  Google Scholar 

  • Liao ZJ (1999) Geothermal resources and heat system of Yunan–Tibet. Science Press House, Beijing

  • Liu LW, Dong P (2012) Numerical simulation of the intraplate stress field in China mainland and adjacent areas and its dynamic implications. Acta Seismol Sin 34(6):727–740

    Google Scholar 

  • Lv BX, Wang Z, Zhang ND (1993) Granite types and their mineralization specialties in Sanjiang area. Geological Publishing House, Beijing

    Google Scholar 

  • Mair K, Marone C (1999) Friction of simulated fault gouge for a wide range of velocities and normal stresses. J Geophys Res 104:28899–28914

    Article  Google Scholar 

  • Mattauer M, Malavieille J, Calassou S, Lancelot J, Roger F, Hao Z, Xu Z, Hou L (1992) The Songpan–Ganzi Triassic belt of western Sichuan and eastern Tibet: a decollement-fold belt on a passive margin. Compets Rendus de I’Academie des Sciences Paris 314:619–626

    Google Scholar 

  • Metcalfe I (2002) Permian tectonic framework and palaeogeography of SE Asia. J Asian Earth Sci 20:551–566

    Article  Google Scholar 

  • Nie S, Yin A, Rowley DB, Jin Y (1994) Exhumation of the Dabie Shan ultra-high-pressure rocks and accumulation of the Songpan–Ganzi flysch sequence, central China. Geology 22:999–1002

    Article  Google Scholar 

  • Pang ZH, Yang FT, Yuan LJ, Li YM (2011) Geothermal display and its storage temperature of Taxian geothermal field, Xinjiang, western China. Geol Rev 57(1):86–88 (in Chinese)

    Google Scholar 

  • Peng TP, Zhao GC, Fan WM, Peng BX, Mao YS (2014) Zircon geochronology and Hf isotopes of Mesozoic intrusive rocks from the Yidun terrane, Eastern Tibetan Plateau: petrogenesis and their bearings with Cu mineralization. J Asian Earth Sci 80:18–33

    Article  Google Scholar 

  • Petford N, Cruden AR, McCaffrey KJ, Vigneressed JL (2000) Granite magma formation, transport and emplacement in the Earth’s crust. Nature 408:669–673

    Article  Google Scholar 

  • Reid AJ, Wilson CJL, Liu S (2005) Structural evidence for the Permo-Triassic tectonic evolution of the Yidun Arc, eastern Tibetan Plateau. J Struct Geol 27:119–137

    Article  Google Scholar 

  • Reid AJ, Wilson CJL, Shun L, Pearson N, Belousova E (2007) Mesozoic plutons of the Yidun arc, SW China/U/Pb geochronology and Hf isotopic signature. Ore Geol Rev 31:88–106

    Article  Google Scholar 

  • Roger F, Calassou S, Lancelot J, Malavieille J, Mattauer M, Xu Z, Hao Z, Hou L (1995) Miocene emplacement and deformation of the Konga Shan granite (Xianshui He fault, west Sichuan, China): geodynamic implications. Earth Planet Sci Lett 130:201–216

    Article  Google Scholar 

  • Roger F, Malavieille J, Leloup PH, Calassou S, Xu Z (2004) Timing of granite emplacement and cooling in the Songpan–Ganzi fold belt (eastern Tibetan plateau) with tectonic implications. J Asian Earth Sci 22:465–481

    Article  Google Scholar 

  • Roger F, Jolivet M, Malavieille J (2010) The tectonic evolution of the Songpan–Ganzi (North Tibet) and adjacent areas from Proterozoic to Present: a synthesis. J Asian Earth Sci 39:254–269

    Article  Google Scholar 

  • Royden LH, Burchfiel BC, King RW, Wang E, Chen Z, Shen F, Liu Y (1997) Surface deformation and lower crustal flow in eastern Tibet. Science 276:788–790

    Article  Google Scholar 

  • Royden LH, Burchfiel BC, Van der Hilst RD (2008) The geological evolution of the Tibetan Plateau. Science 321:1054–1058

    Article  Google Scholar 

  • Rybach L (1976) Radioactive heat production in rocks and its relation to other petrophysical parameters. Pure Appl Geophys 114:309–318

    Article  Google Scholar 

  • Rybach L (1988) Determination of heat production rate. In: Heanel R, Rybach L, Stegena L (eds) Handbook of terrestrial heat flow density. Kluwer, Holland, pp 125–142

    Google Scholar 

  • Rybach L, Muffler P (1981) Geothermal systems: principles and case histories. Wiley, Hoboken

    Google Scholar 

  • SBGMR (1984) Geological map of H4717 with scale of 1:200000. Geological Publishing House, Beijing

    Google Scholar 

  • SBGMR (Bureau of Geology and Mineral Resource of Sichuan Province) (1991) Regional geology of Sichuan Province. Geological Publishing House, Beijing

    Google Scholar 

  • Sclater JG, Jaupart C, Galson D (1980) The heat flow through oceanic and continental crust and the heat loss of the earth. Rev Geophys 18:269–311

    Article  Google Scholar 

  • Segoyer JD, Vanderhaeghe O, Duchene S, Billerot A (2014) Generation and emplacement of Triassic granitoids within the Songpan Ganzi accretionary-orogenic wedge in a context of slab retreat accommodated by tear faulting, Eastern Tibetan plateau, China. J Asian Earth Sci 88:192–216

    Article  Google Scholar 

  • Sengor AMC (1984) The Cimmeride orogenic system and the tectonics of Eurasia. Geol Soc Am Spec Pap 195:1–74

    Google Scholar 

  • Sengor AMC (1985) East Asian tectonics collage. Nature 318:15–17

    Article  Google Scholar 

  • Sengor AMC (1987) Tectonics of the Tethysides: orogenic collage development in a collisional setting. Annu Rev Earth Planet Sci 15:213–244

    Article  Google Scholar 

  • Sengor AMC (1990) Plate tectonics and orogenic research after 25 years: Tethyan perspective. Earth Sci Rev 27:1–201

    Article  Google Scholar 

  • She Z, Ma C, Mason R, Li J, Wang G, Lei Y (2006) Provenance of the Triassic Songpan–Ganzi flysch, west China. Chem Geol 231:159–175

    Article  Google Scholar 

  • Shen ZK, Lu JN, Wang M (2005) Burgmann R (2005) Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. J Geophys Res 110:B11409. doi:10.1029/2004JB003421

    Article  Google Scholar 

  • Sun J, Jin GW, Bai DH, Wang LF (2003) Electrical structure of the crust and Upper mantle and its tectonic implication, eastern Tibetan Plateau. Science in China (Series D) 33:173–180 (In Chinese)

  • Tang XC, Zhang YX (2012) Eclogitic metasediments from central Qiangtang, northern Tibet: evidence for continental subduction during the eastern and western Qiangtang collision. J Geol Soc India 80:836–844

    Article  Google Scholar 

  • Tang WQ, Chen ZL, Liu YP, Zhang QZ, Zhao JX, Burchfiel BC, King RW (2005) Present-day tectonics activity in the intersection area of the Xianshuihe Fault and Longmenshan fault on the eastern margin of the Qinghai–Tibet Plateau. Geol Bull China 24:1169–1172

    Google Scholar 

  • Tang XC, Zhang KJ, Zhang YX (2014) Lawsonite- and glaucophane-bearing blueschists from NW Qiangtang, northern Tibet, China: mineralogy, geochemistry, geochronology, and tectonic implications. Int Geol Rev 56:150–166

    Article  Google Scholar 

  • Tao W, Shen ZK (2008) Heat flow distribution in Chinese continent and its adjacent area. Prog Nat Sci 18:843–849

    Article  Google Scholar 

  • Tapponnier P et al (2001) Oblique stepwise rise and growth of the Tibet Plateau. Science 294:1671–1677

    Article  Google Scholar 

  • Taylor A, Li Z (1996) Geothermal resources in China. Bob Lawrence & Associates, Inc., Washington

    Google Scholar 

  • Tung W, Chang C, Chang M, Liao C, Yu M et al (1978) The Himalayan geothermal belt. J Peiking Univ 1:76–88

  • Wallis S, Tsujimori T, Aoya M, Kawakami T, Terada K, Suzuki K, Hyodo H (2003) Cenozoic and Mesozoic metamorphism in the Longmen Shan orogen: implications for geodynamic models of eastern Tibet. Geology 31:745–748

    Article  Google Scholar 

  • Wang GL (2011) Distribution of geothermal resources in the China. China Geological Survey Report: Beijing

  • Wang JY (2015) Geothermics and its applications. Science press, Beijing

    Google Scholar 

  • Wang CY, Chan WW, Mooney WD (2003) Three–dimensional velocity structural of curst and upper mantle in southwestern China and its tectonic implications. J Geophys Res 108(B9):2442. doi:10.1029/2002JB001973

    Article  Google Scholar 

  • Wang XS, Hu RZ, Bi XW, Leng CB, Pan LC, Zhu JJ, Chen YW (2014) Petrogenesis of Late Cretaceous I-type granites in the southern Yidun Terrane: new constraints on the Late Mesozoic tectonic evolution of the eastern Tibetan Plateau. Lithos 208–209:202–219

    Article  Google Scholar 

  • Wang H, Li HB, Si JL, Sun ZM, Fu XF, Liu DL et al (2015) Progress in the study of the Wenchuan Earthquake Faulting. Acta Geosci Sci 36:257–269

    Google Scholar 

  • Weislogel AL (2008) Tectonostratigraphic and geochronologic constraints on evolution of the northeast Paleotethys from the Songpan–Ganzi complex, central China. Tectonophysics 451:331–345

    Article  Google Scholar 

  • Wen XZ, Allen CR, Luo ZL, Qian H, Zhou HW, Huang WS (1989) Segmentation, Geometric features, and their seismotectonic implications for the Holocenne Xianshuihe fault zone. Acta Seismol Sin 11:362–372

    Google Scholar 

  • Wilson CJL, Harrowfield MJ, Reid AJ (2006) Brittle modification of Triassic architecture in eastern Tibet: implications for the construction of the Cenozoic plateau. J SE Asian Earth Sci 27:341–357

    Article  Google Scholar 

  • Wu T, Xiao L, Ma CQ, Pirajno F, Sun Y, Zhan QY (2014) A mafic intrusion of “arc affinity” in a post–orogenic extensional setting: a case study from Ganluogou gabbro in the northern Yidun Arc Belt, eastern Tibetan Plateau. J Asian Earth Sci 94:139–156

    Article  Google Scholar 

  • Xiao L, Zhang HF, Clemens JD, Wang QW, Kan ZZ, Wang KM, Ni PZ, Liu XM (2007) Late Triassic granitoids of the eastern margin of the Tibetan Plateau: geochronology, petrogenesis and implications for tectonic evolution. Lithos 96:436–452

    Article  Google Scholar 

  • Xu Y, Liang TL (2013) Exploration discovery of high temperature geothermal resources in Kangding country, Sichuan province. Exploration and Development of High Temperature Geothermal Resources in China. Geological Publishing House, Beijing

  • Xu Z, Hou L, Wang Z (1992) Orogenic processes of the Songpan–Ganzi orogenic belt of China. Geological Publishing House, Beijing

    Google Scholar 

  • Xu XW, Wen XZ, Zhang RZ et al (2003) Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan–Yunnan region, China. Sci China Ser D Earth Sci 46(1):210–226

    Google Scholar 

  • Xu XW, Wen XZ, Yu GH, Zheng RZ, Luo HY, Zheng B (2005) Average slip rate, earthquake rupturing segmentation and recurrence behavior on the Litang fault zone, western Sichuan Province, China. Sci China Ser D Earth Sci 48:1183–1196

    Article  Google Scholar 

  • Yan B, Lin AM (2015) Systematic deflection and offset of the Yangtze River drainage system along the strike–slip Ganzi–Yushu–Xianshuihe Fault Zone, Tibetan Plateau. J Geodyn 87:13–25

    Article  Google Scholar 

  • Yang HJ, Xiao L, Wu T, Yang G (2013a) Petrogenesis and tectonic implication of Gongbana, Daocheng, Peraluminous Granitoids in Yidun island arc belt. Geol Sci Technol Inf 32:55–63

    Google Scholar 

  • Yang HJ, Xiao L, Wu T, Yang G (2013b) Petrogenesis and tectonic implication of Gongbana, Daocheng, peraluminous granitoids in Yidun island arc belt. Geol Sci Technol Inf 32:55–63

    Google Scholar 

  • Yasuyuki K, Jim M, Ryo F et al (1999) Heat signature on the Chelungpu fault associated with the 1999 Chi-Chi, Taiwan earthquake. Geophys Res Lett 33:1–4

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan–Tibetan Orogen. Ann Rev Earth Planet Sci 28:211–280

    Article  Google Scholar 

  • Yuan C, Zhou MF, Sun M, Zhao YJ, Wilde S, Long XP, Yan DP (2010) Triassic granitoids in the eastern Songpan Ganzi Fold Belt, SW China: magmatic response to geodynamics of the deep lithosphere. Earth Planet Sci Lett 290:481–492

    Article  Google Scholar 

  • Zhang KJ (2001) Is the Songpan–Ganzi terrane (central China) really underlain by oceanic crust? J Geol Soc India 57(22):3–230

    Google Scholar 

  • Zhang KJ (2002) Escape hypothesis for the North and South China collision and the tectonic evolution of the Qinling orogen, eastern Asia. Eclogae Geol Helv 95:237–247

    Google Scholar 

  • Zhang ZH, Liou JG, Coleman RG (1984) An outline of the plate tectonics of China. Geol Soc Am Bull 95:295–312

    Article  Google Scholar 

  • Zhang KJ, Xia BD, Liang XW (2002) Mesozoic–Paleogene sedimentary facies and paleogeography of Tibet, western China: tectonic implications. Geol J 37:217–246

    Article  Google Scholar 

  • Zhang PZ, Deng Q, Zhang G, Ma J, Gan W (2003) Active tectonic blocks and strong earthquakes in continental China. Sci China Ser D Earth Sci 33:13–24

    Google Scholar 

  • Zhang PZ, Shen ZK, Wang M, Gan WJ, Burgmann R, Molnar P, Wang Q, Niu ZJ, Sun JZ, Wu JC, Sun HR, You XZ (2004) Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 32:809–812

    Article  Google Scholar 

  • Zhang HF, Zhang L, Harris N, Jin LL, Yuan HL (2006a) U–Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan–Garze fold belt, eastern Tibetan Plateau: constraints on petrogenesis and tectonic evolution of the basement. Contrib Miner Petrol 152:75–88

    Article  Google Scholar 

  • Zhang KJ, Cai JX, Zhang YX, Zhao TP (2006b) Eclogites from central Qiangtang, northern Tibet (China) and tectonic implications. Earth Planet Sci Lett 245:722–729

    Article  Google Scholar 

  • Zhang KJ, Zhang YX, Li B, Zhong LF (2007) Nd isotopes of siliciclastic rocks from Tibet, western China: constraints on the pre-Cenozoic tectonic evolution. Earth Planet Sci Lett 256:604–616

    Article  Google Scholar 

  • Zhang CZ, Li B, Cai JX, Tang XC, Wei QG, Zhang YX (2008a) A–type granite and adakitic magmatism association in Songpan–Ganzi fold belt, eastern Tibetan Plateau: implication for lithospheric delamination: comment. Lithos 103:562–564

    Article  Google Scholar 

  • Zhang KJ, Li B, Wei QG, Cai JX, Zhang YX (2008b) Proximal provenance of the western Songpan–Ganzi turbidite complex (Late Triassic, Eastern Tibetan Plateau): implications for the tectonic amalgamations of China. Sediment Geol 208:36–44

    Article  Google Scholar 

  • Zhang KJ, Li B, Wei QG (2012a) Geochemistry and Nd isotopes of the Songpan–Ganzi Triassic turbidites, central China: diversified provenances and tectonic implications. J Geol 120:68–82

    Google Scholar 

  • Zhang KJ, Zhang YX, Tang XC, Xia B (2012b) Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision. Earth Sci Rev 114:236–249

    Article  Google Scholar 

  • Zhang LY, Ding L, Pullen A, Xu Q et al (2014) Age and geochemistry of western Hoh–Xil–Songpan–Ganzi granitoids, northern Tibet: implications for the Mesozoic closure of the Paleo-Tethys ocean. Lithos 190–191:328–348

    Article  Google Scholar 

  • Zheng KY, Chen ZH (2013) A comparison of fluid geochemistry between Kangding and Tibet high temperature geothermal resources. Exploration and Development of High Temperature Geothermal Resources in China. Geological Publishing House, Beijing

  • Zhou XC (2011) Gas geochemistry in Western Sichuan related to 12 May 2008 Wenchuan Ms. 8.0 earthquake. Theses of doctor’s degree. University of Science and Technology of China. p 89

  • Zhou RJ, Chen GX, Li Y, Zhou ZH, Li XG (2005) Research on active faults in Litang–Batang region, western Sichuan province, and the seismogenic structures of the 1989 Batang M 6.7 earthquake swarm. Seismol Geol 27(1):31–43

    Google Scholar 

  • Zhou RJ, Ye YQ, Li Y, Li XG, He YL, Ge TY (2007) Late-quaternary activity of the Shawan segment of the Litang fault. Quat Sci 27:45–53

    Google Scholar 

  • Zhou RJ, He YL, Huang ZZ et al (2001) The silp rate and strong Earthquake recurrence interval on the Qianning-Kangding segment of the Xianshuihe Fault zone. Acta Seismologica Sinica 23:250–261

  • Zhu YQ, Shi YL (1990) Shear heating and partial melting of granite-thermal structural at overthrusted terrains in the greater Himalaya. Acta Geophys Sin 33:408–416

    Google Scholar 

Download references

Acknowledgements

This work was supported by Open Foundation of Oil and Gas Survey, Chinese Geological Survey (DD20160177-03-01), National Science Foundation of China (Grants 41602257, 41430319 and 41574074), and China Postdoctoral Science Foundation (2016M591236). We are grateful to LJ Gao, WY Li, and YF Ai for analytical support and to the journal reviewer, whose thoughtful and constructive review comments helped to improve the manuscript greatly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianchun Tang.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on ‘Subsurface Energy storage’, guest edited by Sebastian Bauer, Andreas Dahmke, and Olaf Kolditz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Zhang, J., Pang, Z. et al. Distribution and genesis of the eastern Tibetan Plateau geothermal belt, western China. Environ Earth Sci 76, 31 (2017). https://doi.org/10.1007/s12665-016-6342-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6342-6

Keywords

Navigation