Skip to main content

Upward brine migration resulting from pressure increases in a layered subsurface system

Abstract

Upward displacement of brine from deep geological formations poses a potential threat to near-surface drinking water resources. In this work, the impact of a layered sequence of hydraulically permeable and impermeable layers connected by a vertical fluid pathway like, e.g., a fault is investigated using an idealized scenario and numerical process simulation. Long-term upward brine migration is induced by overpressure in the lowest permeable formation, and the upward migration through the vertical pathway and the interaction with the intermediary permeable layers is investigated. The simulations show that brine displaced upwards through the vertical fluid pathway moves into the intermediary permeable formations, settling into the lower parts of the permeable layers and displacing the resident less salty formation brine from this layer further upwards through the vertical pathway. Thus, formation brine from different depths displaces each other rather than mixing along the pathway or rising along the full length of the vertical pathway. An effect of the gradual upward displacement is a decrease in the salt concentrations along the pathway such that brine intrusion into the groundwater aquifer is reduced. However, if the hydraulic connection between the vertical pathway and the intermediary layers is low, higher-density brine accumulates in the vertical pathway and upward movement of the brine is impeded due to its own weight.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. al Hagrey SA, Köhn D, Wiegers CE, Schäfer D, Rabbel W (2014) Feasibility study for geophysical monitoring renewable gas energy compressed in pore storages. http://angusplus.de/en/publications/journal-articles-list-angus

  2. Bauer S, Beyer C, Dethlefsen C, Dietrich P, Duttmann R, Ebert M, Feeser V, Görke U, Köber R, Kolditz O, Rabbel W, Schanz T, Schäfer D, Würdemann H, Dahmke A (2013) Impacts of the use of the geological subsurface for energy storage: an investigation concept. http://angusplus.de/en/publications/journal-articles-list-angus

  3. Bauer S, Pfeiffer T, Bookmeyer A, Dahmke A, Beyer C (2015) Quantifying induced effects of subsurface renewable energy storage. Energy Procedia 76:633–641

    Article  Google Scholar 

  4. Benisch K, Bauer S (2013) Short- and long-term regional pressure build-up during \(\text{ CO }_{2}\) injection and its applicability for site monitoring. Int J Greenh Gas Control 19:220–233

    Article  Google Scholar 

  5. Berta M, Becker A, Dethlefsen F, Ebert M, Koch S, Dahmke A (2015) Experiments showed no reactions coupled to methane leaked into shallow aquifers. First Break 33(12):93–95

    Google Scholar 

  6. BGR (2016) Schieferöl und Schiefergas in Deutschland: Potentiale und Umweltaspekte. Tech. rep, Bundesanstalt für Geowissenschaften und Rohstoffe (BGR)

  7. Birkholzer JT, Zhou Q, Tsang CF (2009) Large-scale impact of \(\text{ CO }_{2}\) storage in deep saline aquifers: a sensitivity study on pressure response in stratified systems. Int J Greenh Gas Control 3(2):181–194

    Article  Google Scholar 

  8. Brace WF (1980) Permeability of crystalline and argillaceous rocks. Int J Rock Mech Min Sci 17:241–251

    Article  Google Scholar 

  9. Buecker C, Gosswig S, Hurtig E, Rembe M, Stadt N (2015) Prozessabläufe im Speicherbereich bei der Injektion von Flüssigkeiten in Bohrungen - Messung und Simulation. DGMK-Tagungsband 2015-1. ISBN 978-3-941721-55-2

  10. Cherubini Y, Cacace M, Scheck-Wenderoth M, Noack V (2014) Influence of major fault zones on 3-D coupled fluid and heat transport for the Brandenburg region (NE German Basin). Geotherm Energy Sci 2:1–20

    Article  Google Scholar 

  11. Clark JE, Bonura DK, Van Voorhees RF (2005) An overview of injection well history in the United States of America. In: Underground injection—science and technology. Elsevier, Amsterdam. Dev Water Sci 52

  12. Delfs JO, Kalbus E, Park CH, Kolditz O (2009) A physically based model concept for transport modelling in coupled hydrosystems. Grundwasser 14(3):219–235

    Article  Google Scholar 

  13. Dethlefsen F, Ebert M, Dahmke A (2014) A geological database for parameterization in numerical modeling of subsurface storage in northern Germany. http://angusplus.de/en/publications/journal-articles-list-angus

  14. Dethlefsen F, Beyer C, Feeser V, Köber R (2016) Parameterizability of processes in subsurface energy and mass storage. http://angusplus.de/en/publications/journal-articles-list-angus

  15. Diersch HJG, Kolditz O (2002) Variable-density flow and transport in porous media: approaches and challenges. Adv Water Res 25:899–944

    Article  Google Scholar 

  16. Fryberger JS (1975) Investigation and rehabilitation of a brine-contaminated aquifer. Groundwater 13(2):155–160

    Article  Google Scholar 

  17. Graf T (2009) Simulation of geothermal flow in deep sedimentary basin in Alberta. Tech. rep, Energy Resources Conservation Board, Alberta Geological Survey

  18. Grube A, Hermsdorf A, Lang M, Rechlin B, Schneider W, Wichmann K (2000a) Prognose des Salzwasseraufstiegs im pleistozänen Grundwasserleiterkomplex eines geplanten Wasserwerkes im Land Brandenburg - Grundwassermodelle und hydrogeochemische Untersuchungen. Brandenburgische Geowiss Beitr 7:41–52

    Google Scholar 

  19. Grube A, Wichmann K, Hahn J, Nachtigall KH (2000b) Geogene Grundwasserversalzung in den Porengrundwasserleitern Norddeutschlands und ihre Bedeutung für die Wasserwirtschaft. DVGW-Technologiezentrum Wasser (TZW), Karlsruhe

  20. Hese F (2012) 3D Modellierungen und Visualisierungen von Untergrundstrukturen für die Nutzung des unterirdischen Raumes in Schleswig-Holstein. PhD thesis, Mathematisch-Naturwissenschaftliche Fakultät, CAU Kiel

  21. Jolley SJ, Dijk H, Lamens JH, Fisher QJ, Manzocchi T, Eikmans H, Huang Y (2007) Faulting and fault sealing in production simulation models: Brent Province, northern North Sea. Pet Geosci 13:321–340

    Article  Google Scholar 

  22. Kempka T, Herd R, Huenges E, Endler R, Jahnke C, Janetz S, Jolie E, Kühn M, Magri F, Meinert P, Moeck I, Möller M, Munoz G, Ritter O, Schafrik W, Schmidt-Hattenberg C, Tillner E, Voigt HJ, Zimmermann G (2015) Joint research project Brine: implications for synergetic geothermal heat recovery and conceptualization of an early warning system against freshwater salinization. In: Liebscher A, Münch U (eds) Geological storage of \(\text{ CO }_{2}\) long term security aspects. Springer, Berlin

  23. Kolditz O, Bauer S (2004) A process-oriented approach to computing multi-field problems in porous media. J Hydroinform 6:225–244

    Google Scholar 

  24. Kolditz O, Ratke R, Diersch HJ, Zielke W (1998) Coupled groundwater flow and transport: 1. Verification of variable density flow and transport models. Adv Water Resour 21:27–46

    Article  Google Scholar 

  25. Kolditz O, Görke UJ, Shao H, Wang W (2012) Thermo-hydro-mechanical-chemical processes in porous media: benchmarks and examples. In: Lecture notes in computational science and engineering, vol 86. Springer, Berlin

  26. Kuzmin D (2009) Explicit and implicit FEM-FCT algorithms with flux linearization. J Comput Phys 228(25172):534

    Google Scholar 

  27. Lemieux JM (2011) Review: the potential impact of underground geological storage of carbon dioxide in deep saline aquifers on shallow groundwater resources. Hydrogeol J 19:757–778

    Article  Google Scholar 

  28. Magri F, Bayer U, Clausnitzer V, Diersch HJ, Fuhrmann J, Möller P, Pekdeger A, Tesmer M, Voigt H (2005) Deep reaching fluid flow close to convective instability in the NE German basin—results from water chemistry and numerical modelling. Tectonophysics 397:5–20

    Article  Google Scholar 

  29. Magri F, Bayer U, Pekdeger A, Otto R, Thomsen C, Maiwald U (2009) Salty groundwater flow in the shallow and deep aquifer systems of the Schleswig-Holstein area (North German Basin). Tectonophysics 470:183–194

    Article  Google Scholar 

  30. Mitiku AB, Bauer S, Beyer C (2013) Geochemical modelling of \(\text{ CO }_2\)–water–rock interactions in a potential storage formation of the North German sedimentary basin. Appl Geochem 36:168–186

    Article  Google Scholar 

  31. Müller C, Reinhold K (2011) Informationssystem Speichergesteine für den Standort Deutschland - Synthese. Bundesanstalt für Geowissenschaften und Rohstoffe, Berlin/Hannover

  32. Nield DA, Bejan A (2012) Convection in porous media. Springer, New York

    Google Scholar 

  33. Noack V, Cherubini Y, Scheck-Wenderoth M, Lewerenz B, Höding T, Simon A, Moeck I (2010) Assessment of the present-day thermal field (NE German Basin)—inferences from 3D modelling. Chem Erde 70:47–62

    Article  Google Scholar 

  34. Oldenburg CM, Rinaldi AP (2011) Buoyancy effects on upward brine displacement caused by \(\text{ CO }_{2}\) injection. Transp Porous Med 87:525–540

    Article  Google Scholar 

  35. Oldenburg CM, Cihan A, Zhou Q, Fairweather S, Spangler LH (2014) Delineating area of review in a system with pre-injection relative overpressure. Energy Procedia 63:3715–3722

    Article  Google Scholar 

  36. Pruess K (2005) Numerical studies of fluid leakage from a geologic disposal reservoir for \(\text{ CO }_{2}\) show self-limiting feedback between fluid flow and heat transfer. Geophy Res Lett 32:LI4404

    Article  Google Scholar 

  37. Réveillère A (2013) Semi-analytical solution for brine leakage through passive abandoned wells taking account of brine density difference. Transp Porous Med 100:337–361

    Article  Google Scholar 

  38. Sauter M, Holzbecher E (2010) Potentiale und Risiken der von K+S Kali GmbH vorgeschlagenen Neuen Integrierten Salzabwassersteuerung (NIS). Tech. rep, Gutachten im Auftrag des Runden Tischs Gewässerschutz Warra/Weser und Kaliproduktion

  39. Sauter M, Helmig R, Schetelig K (2011) Abschätzung der Auswirkungen von Fracking-Maßnahmen auf das oberflächennahe Grundwasser. Tech. rep, Gutachten im Rahmen des Info Dialogs Fracking der Exxon Mobil

  40. Singh A, Delfs JO, Görke UJ, Kolditz O (2014) Toward physical aspects affecting a possible leakage of geologically stored \(\text{ CO }_{2}\) into the shallow subsurface. Acta Geotech 9(1):81–86

    Article  Google Scholar 

  41. Tesmer M, Möller P, Wieland S, Jahnke C, Voigt H, Pekdeger A (2007) Deep reaching fluid flow in the North East German Basin: origin and processes of groundwater salinization. Hydrogeol J 15:1291–1306

    Article  Google Scholar 

  42. Tillner E, Kempka T, Nakaten B, Kühn M (2013) Brine migration through fault zones: 3D numerical simulations for a prospective \(\text{ CO }_{2}\) storage site in Northeast Germany. Int J Greenh Gas Control 19:689–703

    Article  Google Scholar 

  43. Walter L, Binning PJ, Class H (2013) Predicting salt intrusion into freshwater aquifers resulting from \(\text{ CO }_{2}\) injection—a study on the influence of conservative assumptions. Adv Water Res 62:543–554

    Article  Google Scholar 

  44. Walter M, Delfs JO, Grundmann J, Kolditz O, Liedl R (2012) Saltwater intrusion modeling: verification and application to an agricultural coastal arid region in Oman. J Comput Appl Math 236(18):4798–4809

    Article  Google Scholar 

  45. Watanabe N, Kolditz O (2015) Numerical stability analysis of two-dimensional solute transport along a discrete fracture in a porous rock matrix. Water Resour Res 51:5855–5868

    Article  Google Scholar 

  46. Wolfgramm M, Thorwart K, Rauppach K, Brandes J (2011) Zusammensetzung, Herkunft und Genese geothermaler Tiefengrundwässer im Norddeutschen Becken (NDB) und deren Relevanz für die geothermische Nutzung. Z Geol Wiss 339:173–193

    Google Scholar 

  47. Zemke J, Stöwer M, Borgmeier M (2005) Injection of brine from cavern leaching into deep saline aquifers: long-term experiences in modeling and reservoir survey. In: Underground injection—science and technology. Elsevier, Amsterdam, Dev Water Sci 52

  48. Zhao C, Hobbs BE, Ord A, Peng PHS, Liu L (2006) Mineral precipitation associated with vertical fault zones: the interaction of solute advection, diffusion and chemical kinetics. Geofluids 7(1):3–18

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of the ANGUS+ project (www.angusplus.de, Grant Number 03EK3022) and funded by the German Federal Ministry of Education and Research (BMBF) as part of the energy storage initiative “Energiespeicher.”

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jens-Olaf Delfs.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on ‘Subsurface Energy storage’, guest edited by Sebastian Bauer, Andreas Dahmke, and Olaf Kolditz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Delfs, JO., Nordbeck, J. & Bauer, S. Upward brine migration resulting from pressure increases in a layered subsurface system. Environ Earth Sci 75, 1441 (2016). https://doi.org/10.1007/s12665-016-6245-6

Download citation

Keywords

  • Thermohaline simulation
  • Brine migration
  • Permeable fault
  • Deep underground injection
  • Salt intrusion