Skip to main content
Log in

Deep reaching fluid flow in the North East German Basin: origin and processes of groundwater salinisation

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Major element chemistry, rare-earth element distribution, and H and O isotopes are conjointly used to study the sources of salinisation and interaquifer flow of saline groundwater in the North East German Basin. Chemical analyses from hydrocarbon exploration campaigns showed evidence of the existence of two different groups of brines: halite and halite Ca–Cl brines. Residual brines and leachates are identified by Br/Cl ratios. Most of the brines are dissolution brines of Permian evaporites. New analyses show that the pattern of rare-earth elements and yttrium (REY) are closely linked to H and O isotope distribution. Thermal brines from deep wells and artesian wells indicate isotopically evaporated brines, which chemically interacted with their aquifer environment. Isotopes and rare-earth element patterns prove that cross flow exists, especially in the post-Rupelian aquifer. However, even at depths exceeding 2,000 m, interaquifer flow takes place. The rare-earth element pattern and H and O isotopes identify locally ascending brines. A large-scale lateral groundwater flow has to be assumed because all pre-Rupelian aquifer systems to a depth of at least 500 m are isotopically characterised by Recent or Pleistocene recharge conditions.

Résumé

La chimie des ions majeurs, la distribution des éléments rares et les isotopes de l’hydrogène et de l’oxygène sont utilisés conjointement pour étudier l’origine de la salinité et les flux d’eaux salées inter-aquifères dans le Bassin Nord-Est Allemand. Les analyses chimiques effectuées à l’occasion de campagnes de prospection d’hydrocarbures ont démontré l’existence de deux différents groupes de saumures : les saumures chlorurées sodiques et les saumures chlorurées sodiques et calciques. Les saumures résiduelles et les lixiviats sont identifiés par leurs rapports Br/Cl. La plupart des saumures sont issues de la dissolution des évaporites permiennes. De nouvelles analyses montrent que la répartition des éléments en traces et de l’yttrium (REY) sont étroitement liés à la distribution des isotopes de l’hydrogène et de l’oxygène. Les isotopes dans les saumures thermales issues de puits profonds et de puits artésiens indiquent des saumures évaporées, qui interagissent avec leur environnement aquifère. La répartition des isotopes et des éléments en traces prouve que des écoulements croisés existent, notamment dans l’aquifère post-rupélien. Cependant, des échanges inter-aquifères se produisent même à des profondeurs supérieures à 2000 m. La distribution des éléments en traces et les isotopes de O et H permettent d’identifier les saumures localement ascendantes. On suppose également l’existence d’un écoulement latéral à grande échelle, car les abondances isotopiques dans tous les systèmes aquifères pré-rupéliens, dont le mur est profond de 500 m au minimum, mettent en évidence des conditions de réalimentation récentes ou datant du Pléistocène.

Resumen

La química de elementos mayores, la distribución de tierras raras y los isótopos de H y O han sido utilizados conjuntamente para el estudio de las fuentes de salinización y flujo entre acuíferos del agua subterránea salina en la Cuenca Noreste de Alemania. Análisis químicos de campañas de exploración de hidrocarburos mostraron evidencias de la existencia de dos grupos diferentes de salmueras: halita y halita Ca–Cl. Se han identificado salmueras residuales y lixiviados mediante la relación Br/Cl. La mayoría de las salmueras proceden de la disolución de evaporitas Pérmicas. Nuevos análisis muestran que el patrón de las tierras raras e Ytrio (REY) está directamente relacionado con la distribución isotópica de H y O. Salmueras termales procedentes de pozos profundos y pozos artesianos apuntan isotópicamente hacia salmueras evaporadas, que interactúan químicamente con el ambiente del acuífero. El modelo de isótopos y tierras raras prueba que existe un flujo cruzado, especialmente en el acuífero post-Rupeliano. Sin embargo, incluso a profundidades mayores de 2000 m, se produce un flujo entre acuíferos. La distribución de tierras raras y de los isótopos de H y O identifica localmente salmueras ascendentes. Se ha asumido un flujo lateral de agua subterránea a gran escala porque isotópicamente todos los sistemas acuíferos pre-Rupelianosse se caracterizan por condiciones de recarga recientes o Pleistocenas, hasta una profundidad de 500 m como mínimo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Anders E, Grevesse N (1989) Abundance of elements: meteoric and solar. Geochim Cosmochim Acta 53:197–214

    Article  Google Scholar 

  • Bassett RL, Bentley ME (1982) Geochemistry and hydrodynamics of deep formation brines in the Palo Duro Basin and Dalhart Basins, Texas, USA. J Hydrol 59:331–372

    Article  Google Scholar 

  • Bau M (1999) Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxides: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochim Cosmochim Acta 63:67–77

    Article  Google Scholar 

  • Bau M, Dulski P (1996) Anthropogenic origin of positive gadolinium anomalies in river waters. Earth Planet Sci Lett 143:245–255

    Article  Google Scholar 

  • Beer H, Manhenke V (2001) Erdwärme-und Thermalsolnutzung in Ostbrandenburg [Geothermal and hydrothermal resources in East Brandenburg]. Zt Geol Wiss 29:211–222

    Google Scholar 

  • Bein A, Dutton AR (1993) Origin, distribution, and movement of brine in the Permian Basin (U.S.A.): a model for displacement of connate brine. Geol Soc Amer Bull 105:695–707

    Article  Google Scholar 

  • Bennett SS, Hanor JS (1987) Dynamics of subsurface salt dissolution at the Welsh Dome, Lousiana Gulf Coast. In: Lerch I, O’Brien JJ (eds) Dynamical geology of salt and related structures, Academic Press, Orlando, FL, USA, pp 653–677

  • Bourg C, Stievenard M, Jouzel J (2001) Hydrogen and oxygen isotopic composition of aqueous salt solutions by gas-water equilibration method. Chem Geol 173:331–337

    Article  Google Scholar 

  • Carpenter AB (1978) Origin and chemical evolution of brines in sedimentary basins. Oklahoma Geol Surv Bull 79:60–77

    Google Scholar 

  • Clayton RN, Friedmann I, Graf DL, Mayeda TK, Meents WF, Shimp NF (1966) The origin of saline formation waters. J Geophys Res 71:3869–3882

    Google Scholar 

  • Connolly CA, Walter LM, Baadsgaard H, Longstaffe FJ (1990) Origin and evolution of formation waters, Alberta Basin, Western Canada Sedimentary Basin. I. Chemistry. Appl Geochem 5:397–413

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Article  Google Scholar 

  • Domenico PA, Robbins GA (1985) The displacement of connate water from aquifers. Geol Soc Amer Bull 96:328–335

    Article  Google Scholar 

  • Dulski P (1994) Interferences of oxide, hydroxide and chloride analyte species in the determination of rare earth elements in geological samples by inductively coupled plasmamass spectrometry. Fresenius’ J Anal Chem 350:194–203

    Article  Google Scholar 

  • Dulski P (2001) Reference materials for Geochemical studies: new analytical data by ICP-MS and critical discussion of reference values. Geostand Newsl 25:87–125

    Article  Google Scholar 

  • Evans D, Nunn J (1989) Free thermohaline convection in sediments surrounding a salt column. J Geophys Res 94:12413–12422

    Google Scholar 

  • Fontes JC, Matray JM (1993) Geochemistry and origin of formation brines from the Paris basin, France, 1: brines associated with Triassic salts. Chem Geol 109:149–175

    Article  Google Scholar 

  • Glander H, Schirrmeister W (1975) Erfassung und Darstellung der oberen Mineralwassergrenzfläche [Delineation and mapping of the upper fresh-/saltwater interface]. Zt Angew Geol 21:322–334

    Google Scholar 

  • Graf DL, Meents WF, Friedman I, Shimp NF (1966) The origin of saline formation waters III: calcium-chloride waters. US Geol Surv Circ 397:60

    Google Scholar 

  • Grube A, Lotz B (2004) Geological and numerical modeling of geogenic salinisation in the area of the Lübeck basin (North Germany). Groundwater and saline intrusion. Selected papers from the 18th Salt Water Intrusion Meeting (SWIM), Cartagena, Spain, 31 May–3 June 2004, pp 183–195

  • Grube A, Wichmann K, Hahn J, Nachtigall KH (2000) Geogene Grundwasserversalzung in den Porengrundwassserleitern Norddeutschlands und ihre Bedeutung für die Wasserwirtschaft [Geogenic groundwater salinisation of porous aquifer systems and its impact on water management]. Technologiezentrum Wasser Karlsruhe (TZW), Karlsruhe, Germany, 203 pp

    Google Scholar 

  • Hannemann M, Schirrmeister W (1998) Paläohydrogeologische Grundlagen der Entwicklung der Süß-/Salzwassergrenze und der Salzwasseraustritte in Brandenburg [Paleo-hydrogeological principles of the development of the fresh-/saltwater interface and the occurrence of saline springs in Brandenburg]. Brandenbg Geowiss Beitr 5:61–72

    Google Scholar 

  • Hanor JS (1994a) Origin of saline fluids in sedimentary basins. In: Parnell J (ed) Geofluids: origin, migration and evolution of fluids in sedimentary basins. Geol Soc Spec Publ 78:151–178

  • Hanor JS (1994b) Physical and chemical controls on the composition of waters in sedimentary basins. Mar Pet Geol 11:31–46

    Article  Google Scholar 

  • Hennebrüder K, Wennrich R, Mattusch J, Stärk HJ, Engewald W (2004) Determination of gadolinium in river water by SPE preconcentration and ICP-MS. Talanta 63:309–316

    Article  Google Scholar 

  • Hoth P, Seibt A, Kellner T, Huenges E (1997) Geothermie Report 97-1: Geowissenschaftliche Bewertungsgrundlagen zur Nutzung hydrogeothermaler Resourcen in Norddeutschland [Basis of geoscientific evaluation for using geothermal resources in northern Germany]. Sci Tech Rep 15:1–149

    Google Scholar 

  • Kaiser R (2001) Fazies und Sequenzstratigraphie: Das Staßfurtkarbonat (Ca2) am nördlichen Beckenrand des südlichen Zechsteinbeckens (NE-Deutschland) (Facies and sequence stratigraphy: the Staßfurtcarbonate (Ca2) at the northern margin of the southern evaporite basin of Upper Permian). PhD Thesis, Universität Köln, Germany

  • Kawabe I, Ohta A, Miura N (1999) Distribution coefficients of REE between Fe oxyhydroxide precipitates and NaCl solutions affected by REE-carbonate complexation. Geochem J 33:181–197

    Google Scholar 

  • Kharaka YK, Berry FAF (1973) Simultaneous flow of water and solutes through geological membranes: I. experimental investigations. Geochim Cosmochim Acta 37:2577–2603

    Article  Google Scholar 

  • Klinge H, Vogel P, Schelkes K (1992) Chemical composition and origin of saline formation waters from the Konrad mine, Germany. Water–Rock Interaction, Proceedings of the 7th International Symposium on Water–Rock Interaction/WRI-7, Park City, Utah, USA, 13–18 July 1992, pp 1117–1120

  • Klinge H, Schelkes K, Rübel A, Suckow A, Schildknecht F, Ludwig R (2002) The saltwater/freshwater regime in the sedimentary cover of the Gorleben Salt Dome. Transp Porous Media 47:125–148

    Article  Google Scholar 

  • Kloppmann W, Negrel P, Casanova J, Klinge H, Schelkes K, Guerrot C (2001) Halite dissolution derived brines in the vicinity of a Permian salt dome (N German Basin): evidence from boron, strontium, oxygen, and hydrogen isotopes. Geochim Cosmochim Acta 65:4087–4101

    Article  Google Scholar 

  • Knauth LP (1988) Origin and mixing history of brines, Palo Duro Basin, Texas, USA. Appl Geochem 3:455–474

    Article  Google Scholar 

  • Kühn M (1997) Geochemische Folgereaktionen bei der hydrothermalen Energiegewinnung [Successive geochemical reactions during utilization of hydrogeothermal energy]. Berichte aus dem Fachbereich Geowissenschaften Universität Bremen, Bremen, Germany, pp 1–129

    Google Scholar 

  • Kyser T, Kerrich R (1990) Geochemistry fluids in tectonically active crustal regions. In: Nesbitt B (ed) Short course in fluids in tectonically active regimes of the continental crust, vol 18, AMC, Quebec, pp 133–230

  • Land LS (1987) The major ion chemistry of saline brines in sedimentary basins. In: Proc. Amer. Inst. of Physics, Conf., Physics and chemistry of porous media II, Schlumberger-Doll, Ridgefield, CT, USA, pp 160–179

  • Land LS (1992) Saline formation waters in sedimentary basins: connate or diagenetic. Water Rock Interaction-Proceedings of the 7th International Symposium on Water–Rock Interaction/WRI-7, Park City, UT, USA, 13–18 July 1992, pp 865–868

  • Land LS, Macpherson GL (1992) Origin of saline formation waters, Cenozoic section, Gulf of Mexico sedimentary basin. Am Assoc Pet Geol Bull 76:1344–1362

    Google Scholar 

  • Land LS, Prezbindowski DR (1981) The origin and evolution of saline formation water, Lower Cretaceous carbonates, south-central Texas, USA. J Hydrol 54:51–74

    Article  Google Scholar 

  • Lehmann H-W (1974a) Geochemie und Genese der Tiefenwässer der Nordostdeutschen Senke-Teil 1 [Geochemistry and genesis of deep seated brines in the North-East German Basin, part 1]. Zt Angew Geol 20:502–509

    Google Scholar 

  • Lehmann H-W (1974b) Geochemie und Genesis der Tiefenwässer der Nordostdeutschen Senke-Teil 2 [Geochemistry and genesis of deep seated brines in the North-East German Basin, part 2]. Zt Angew Geol 20:551–557

    Google Scholar 

  • Löhnert E, Bauhus W, Sonntag C (1986) Mechanism of groundwater salinisation in the Hamburg region, F.R. Germany: facies and new findings. Proc of the 9th Salt Water Intrusion Meeting (SWIM), Delft Univ. of Technology, The Netherlands, pp 613–628

  • Magri F, Bayer U, Clausnitzer C, Jahnke C, Diersch HJ, Fuhrmann J, Möller P, Pekdeger A, Tesmer M, Voigt HJ (2005a) Deep reaching fluid flow close to convective instability in the NE German Basin: results from water chemistry and numerical modelling. Tectonophysics 397:5–20

    Article  Google Scholar 

  • Magri F, Bayer U, Jahnke C, Clausnitzer V, Diersch HJ, Fuhrman J, Möller P, Pekdeger A, Tesmer M, Voigt HJ (2005b) Fluid-dynamics driving saline water in the North East German Basin. Int J Earth Sci 94:1056–1069

    Article  Google Scholar 

  • Manhenke V (2002) Geologie und Geopotenziale in Brandenburg-Das Geopotenzial Brandenburgs [Geology and geopotential in Brandenburg-Brandenburg’s geopotential]. In: Stackebrandt W, Manhenke V (eds) Atlas zur Geologie von Brandenburg, vol 2. Landesamt für Geowissenschaften und Rohstoffe Brandenburg, Kleinmachnow, Germany, pp 72–73

    Google Scholar 

  • Mehta S, Fryar AE, Banner JL (2000) Controls on the regional-scale salinisation of the Ogallala aquifer, Southern High Plains, Texas, USA. Appl Geochem 15:849–864

    Article  Google Scholar 

  • Meyer H, Schönicke L, Wand U, Hubberten H, Friedrichsen H (2000) Isotope studies of hydrogen and oxygen in ground ice: experiences with the equilibration technique. Isot Environ Health Stud 36:133–149

    Article  Google Scholar 

  • Möller P (2000) Rare earth elements and yttrium as geochemical indicators of the souce of mineral and thermal waters. In: Stober I, Bucher K (eds) Hydrology of crystalline rocks, Kluwer, Dordrecht, pp 227–246

  • Möller P (2002) The distribution of rare earth elements and yttrium in water-rock interactions: field observations and experiments. In: Stober I, Bucher K (eds) Water-rock interaction, Kluwer, Dordrecht, pp 97–123

  • Möller P, Dulski P, Morteani G (2003) Partitioning of rare earth elements yttrium and some major elements among source rocks, liquid and vapor of Lardello-Travale Geothermal Field, Tuscany (central Italy). Geochim Cosmochim Acta 67:171–183

    Article  Google Scholar 

  • Möller P, Woith H, Dulski P, Lüders V, Erzinger J, Kämpf H, Pekdeger A, Hansen B, Lodemann M, Banks D (2005) Main and trace elements in KTB-VB fluid: composition and hints to its origin. Geofluids 5:28–41

    Article  Google Scholar 

  • Möller P, Dulski P, Salameh E, Geyer S (2006) Characterization of thermal spring- and well water in Jordan by rare earth element and yttrium distribution and stable isotopes of H2O. Acta Hydrochim Hydrobiol 34:101–116

    Article  Google Scholar 

  • Neumann E (1975) Hydrogeologische Verhältnisse des Paläozoikums und Mesozoikums am Nordrand der Norddeutsch-Polnischen Senke und ihre Beziehungen zu den Erdöl- und Erdgasvorkommen [Hydrogeological settings of the Palaeozoic and Mesozoic strata in respect to the oil and gas resources at the northern boundary of the German-Polish basin]. PhD Thesis, Bergakademie Freiberg, Germany

  • Naumann D (2000) Salinare Tiefenwässer in Norddeutschland: gas- und isotopengeochemische Untersuchungen zur Herkunft und geothermischen Nutzung [Deep seated brines in northern Germany: gas and isotopes studies to evaluate genesis and geothermal potential]. Sci Tech Rep 00/21, GeoForschungsZentrum Potsdam, Potsdam, Germany, pp 1–116

    Google Scholar 

  • Nishri A, Herbert HJ, Jockwer N, Stichler W (1988) The geochemistry of brines and minerals from the Asse Salt Mine, Germany. Appl Geochem 3:317–332

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Verion 2): a computer program for speciation, batch-reaction, one dimensional transport and inverse geochemical calculations. USGS Water-Resources Invest Rep 99–4259, 312 pp

  • Quinn KA, Byrne RH, Schijf J (2004) Comparative scavenging of yttrium and the rare earth elements in seawater: competitive influences of solution and surface chemistry. Aquatic Chem 100:59–80

    Article  Google Scholar 

  • Rieke H, Kossow D, McCann T, Krawczyk C (2001) Tectono-sedimentary evolution of the northernmost margin of the NE German Basin between uppermost Carboniferous and Late Permian (Rotliegend). Geol J 36:19–38

    Article  Google Scholar 

  • Rizkalla EN, Choppin GR (1991) Hydration and hydrolyse of lanthanides. In: Gschneidner KA, Eyring LJ, Hüfner S (eds) Handbook of physics and chemistry of rare earths, North-Holland, Amsterdam, 15:391–442

  • Scheck M, Bayer U (1999) Evolution of the Northeast German Basin: inferences from a 3D structural model and subsidence analysis. Tectonophysics 313:145–168

    Article  Google Scholar 

  • Scheck M, Barrio-Alvers L, Bayer U, Götze HJ (1999) Density structure of the Northeast German Basin: 3D modelling along the DEKORP line BASIN96. Phys Chem Earth Part A 24:221–230

    Article  Google Scholar 

  • Schmidt Mumm A, Wolfgramm M (2002) Diagenesis and fluid mobilisation during the evolution of the North German Basin: evidence from fluid inclusion and and sulphur isotope analysis. Mar Petrol Geol 19:229–246

    Article  Google Scholar 

  • Senger RK (1991) Regional hydrodynamics of variable-density flow systems, Palo Duro Basin, Texas. The University of Texas at Austin Bureau of Economic Geology Report of Investigation, vol 202. University of Texas, Austin, TX, USA, 54 pp

    Google Scholar 

  • Shabani MB, Agaki T, Shimuzu H, Masuda A (1990) Determination of trace lanthanides and yttrium in seawater by inductively coupled plasma mass spectrometry after preconcentration with solvent extraction and back-extraction. Anal Chem 62:2709–2714

    Article  Google Scholar 

  • Spencer RJ (1987) Origin of Ca–Cl brines in Devonian formations, western Canada sedimentary basin. Appl Geochem 2:373–384

    Article  Google Scholar 

  • Stackebrandt W, Lippstreu L (2002) Geologie und Geopotenziale in Brandenburg-Zur geologischen Entwicklung Brandenburgs [Geology and geopotentials in Brandenburg-Brandenburg’s geopotentials-Brandenbrug’s gelogic evolution]. In: Stackebrandt W, Manhenke V (eds) Atlas zur Geologie von Brandenburg, vol 2. Landesamt für Geowissenschaften und Rohstoffe Brandenburg, Kleinmachnow, Germany, pp 19–24

  • Stueber AM, Walter LM, Huston TJ, Pushkar P (1993) Formation waters from Mississipian-Pennsylvanian reservoirs, Illinois basin, USA: chemical and isotopic constraints on evolution and migration. Geochim Cosmochim Acta 57:763–784

    Article  Google Scholar 

  • Taylor HP (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposits. Econ Geol 69:843–883

    Article  Google Scholar 

  • Toth J (1980) Cross-formational gravity flow of ground water: a mechanism of the transport and accumulation of petroleum (the generalized hydraulic theory of petroleum migration). In: Roberts WH III, Cordell RJ (eds) Problems of petroleum migration. AAPG studies in Geology no. 10, AAPG, Tulsa, OK, USA, pp 121–167

  • Trettin R, Hill A, Wolf M, Deibel K, Glässer W (1997) Isotopenanalytische Charakterisierung tiefliegender Grundwässer im Raum der Fürstenwalde-Gubener Störungszone [Isotopical characterisation of deeper groundwater in the area of the Fürstenwalde-Gubener fault zone]. Zt Grundwasser 2:65–76

    Article  Google Scholar 

  • Voigt HJ (1972) Genese und Hydrochemie mineralisierter Grundwässer [Genesis and hydrochemistry of saline groundwater]. Zentrales Geologisches Institut Berlin, Berlin, pp 1–150

    Google Scholar 

  • Voigt HJ (1975) Zur Dynamik mineralisierter Schichtenwässer im Nordteil der DDR [Dynamics of saline formation water]. Zt Angew Geol 21:164–167

    Google Scholar 

  • Voigt HJ (1977) Zur Geochemie der Spurenelemente Brom, Iod, Strontium und Lithium in den Mineralwässern des Nordteils der DDR [Geochemistry of the trace elements bromine, iodine, boron, strontium and lithium in brines of the northern part of the German Democratic Republic]. Zt Angew Geol 23:395–402

    Google Scholar 

  • Vosteen H-D, Rath V, Schmidt Mumm A, Clauser C (2004) The thermal regime of the Northeastern-German Basin from 2-D inversion. Tectonophysics 386:81–95

    Article  Google Scholar 

  • Warren EA, Smalley PC (1992) Spatial variations in north Sea formation water composition. Water Rock Interaction, Proceedings of the 7th International Symposium on Water–Rock Interaction/WRI-7, Park City, UT, USA, 13–18 July 1992, pp 1129–1132

  • Wilson TP, Long DT (1992) Geochemistry and isotope chemistry of Michigian Basin brines: Devonian formations. Appl Geochem 7:81–100

    Google Scholar 

  • Yapp CJ, Epstein S (1977) Climatic implications of D/H ratios of meteoric water over North America (9500-22,000 B.P.) as inferred from ancient wood cellulose C-H hydrogen. Earth Planet Sci Lett 34:333–350

    Article  Google Scholar 

  • Zieschang J (1974) Ergebnisse und Tendenzen hydrogeologischer Forschungen in der DDR [Results and tendencies of hydrogeological research in the GDR]. Zt Angew Geol 20:452–458

    Google Scholar 

Download references

Acknowledgements

The German Science Foundation (DFG) supported this project as part of the SPP 1135 “Dynamics of Sedimentary Systems under Varying Stress Conditions by Example of the Central European Basin System”. We also acknowledge the help of the Geological Surveys of Berlin (SenStadt Berlin), Brandenburg (LGRB) and Saxony Anhalt (LAGB). We would like to thank the well maintenance companies of Bad Saarow, Bad Wilsnack, Belzig, Templin and Waren for access to their facilities. We gratefully acknowledge the critical comments of three anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tesmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tesmer, M., Möller, P., Wieland, S. et al. Deep reaching fluid flow in the North East German Basin: origin and processes of groundwater salinisation. Hydrogeol J 15, 1291–1306 (2007). https://doi.org/10.1007/s10040-007-0176-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-007-0176-y

Keywords

Navigation