Skip to main content

Advertisement

Log in

Theoretical simulation of the evolution of methane hydrates in the case of Northern South China Sea since the last glacial maximum

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The distribution and inventory of gas hydrates in a region is determined by the sediment characteristics, methane supply and evolution of the reservoir. In recent decades, the geo-environmental constraints and sources of methane have been intensively investigated, and numerous experimental and numerical simulation tools have been developed to evaluate the inventory of hydrates. However, information regarding the evolution of hydrate reservoirs remains limited. This study developed a simulator to theoretically model the evolution of specific reservoirs since the last glacial maximum (LGM). The LGM was a recent cold epoch that occurred approximately 18,000 years ago. Since the LGM, the earth’s climate system has experienced a continuous increase of surface temperature and rising sea level. Given a sufficient supply of methane and a transport system, hydrates may form in marine sediments if sea level rises or melt if the temperature increases. A one-dimensional simulator that represents the sediment was developed and uses the current hydrate profiles as the initial conditions and reliable paleoenvironmental data obtained in sites located in the northern shelf of the South China Sea (SCS) as boundary conditions. Two types of hydrate profiles were reversely simulated till the LGM: (1) a Gaussian profile, which was observed in the Shenhu area and (2) a trapezoidal profile, which was observed in the Dongsha area, SCS. The evolution and past quantities of local hydrate reservoirs were estimated. The model results demonstrated that shallow (500–700 m below the seafloor, or mbsf) moderate-saturation (50 % pore volume, or v:v) hydrate deposits will form if they are subjected to recent climate changes. The inventory of hydrates in the NSCS increased by only 0–7 % over the past 18,000 years under various scenarios. A sensitivity analysis was performed to identify the most pertinent parameters that control the formation and dissociation of hydrates, including the grain size, temperature gradient and deposition depth. The distribution and depth of the reservoir were determined to be the most critical factors in the evolution of the studied hydrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Algar CK, Boudreau BP (2009) Transient growth of an isolated bubble in muddy, fine-grained sediments. Geochim Cosmochim Acta 73(9):2581–2591

    Article  Google Scholar 

  • Algar CK, Boudreau BP, Barry MA (2011a) Initial rise of bubbles in cohesive sediments by a process of viscoelastic fracture. J Geophys Res Solid Earth 116:1–14

    Article  Google Scholar 

  • Algar CK, Boudreau BP, Barry MA (2011b) Release of multiple bubbles from cohesive sediments. Geophys Res Lett 38:1–4

    Article  Google Scholar 

  • Aloisi G, Wallmann K, Haese RR, Saliege JF (2004) Chemical, biological and hydrological controls on the C-14 content of cold seep carbonate crusts: numerical modeling and implications for convection at cold seeps. Chem Geol 213(4):359–383

    Article  Google Scholar 

  • Arning ET, Fu Y, van Berk W, Schulz H-M (2011) Organic carbon remineralisation and complex, early diagenetic solid-aqueous solution-gas interactions: case study ODP Leg 204, Site 1246 (Hydrate Ridge). Mar Chem 126(1–4):120–131

    Article  Google Scholar 

  • Ben Clennell M, Hovland M, Booth JS, Henry P, Winters WJ (1999) Formation of natural gas hydrates in marine sediments 1. Conceptual model of gas hydrate growth conditioned by host sediment properties. J Geophys Res Solid Earth 104(B10):22985–23003

    Article  Google Scholar 

  • Berndt C, Feseker T, Treude T, Krastel S, Liebetrau V, Niemann H, Bertics VJ, Dumke I, Duennbier K, Ferre B, Graves C, Gross F, Hissmann K, Huehnerbach V, Krause S, Lieser K, Schauer J, Steinle L (2014) Temporal constraints on hydrate-controlled methane seepage off svalbard. Science 343(6168):284–287

    Article  Google Scholar 

  • Berner RA (1980) Early diagenesis: a theoretical approach. University Press, Princeton

    Google Scholar 

  • Biastoch A, Treude T, Ruepke LH, Riebesell U, Roth C, Burwicz EB, Park W, Latif M, Boening CW, Madec G, Wallmann K (2011) Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification. Geophys Res Lett 38:1–5

    Article  Google Scholar 

  • Boetius A, Suess E (2004) Hydrate Ridge: a natural laboratory for the study of microbial life fueled by methane from near-surface gas hydrates. Chem Geol 205(3–4):291–310

    Article  Google Scholar 

  • Bohrmann G, Greinert J, Suess E, Torres M (1998) Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability. Geology 26(7):647–650

    Article  Google Scholar 

  • Boudreau BP (1997) Diagenetic models and their implementation. Springer, Berlin

    Book  Google Scholar 

  • Boudreau BP, Gardiner BS, Johnson BD (2001) 2001, Rate of growth of isolated bubbles in sediments with a diagenetic source of methane (vol 46, pg 616. Limnol Oceanogr 46(6):1578

    Google Scholar 

  • Boudreau BP, Algar C, Johnson BD, Croudace I, Reed A, Furukawa Y, Dorgan KM, Jumars PA, Grader AS, Gardiner BS (2005) Bubble growth and rise in soft sediments. Geology 33(6):517–520

    Article  Google Scholar 

  • Bouloubassi I, Aloisi G, Pancost RD, Hopmans E, Pierre C, Damste JSS (2006) Archaeal and bacterial lipids in authigenic carbonate crusts from eastern Mediterranean mud volcanoes. Org Geochem 37(4):484–500

    Article  Google Scholar 

  • Briais A, Patriat P, Tapponnier P (1993) Updated interpetation of magnetic-anomalies and sea-floor spreading stages in the South China sea—implications for the tertiary tectonics of Southeast-Asia. J Geophys Res Solid Earth 98(B4):6299–6328

    Article  Google Scholar 

  • Buffett B, Archer D (2004) Global inventory of methane clathrate: sensitivity to changes in the deep ocean. Earth Planet Sci Lett 227(3–4):185–199

    Article  Google Scholar 

  • Chen F, Su X, Nurnberg D, Lu H, Zhu Y, Liu J, Liao Z (2006) Lithologic features of sediments characterized by high sedimentation rates since the last glacial maximum from Donsha Area of the South China Sea. Marine Geol Quat Geol 26(6):9–17

    Google Scholar 

  • Chen F, Zhou Y, Su X, Liu G, Lu H, Wang J (2011) Gas hydrate saturation and its relation with grain size of the hydrate-bearing sediments in the Shenhu area of Northern South China Sea. Marine Geol Quat Geol 31(5):95–100

    Article  Google Scholar 

  • Class H, Helmig R, Bastian P (2002) Numerical simulation of non-isothermal multiphase multicomponent processes in porous media. 1. An efficient solution technique. Adv Water Resour 25(5):533–550

    Article  Google Scholar 

  • Daigle H, Dugan B (2010) Effects of multiphase methane supply on hydrate accumulation and fracture generation. Geophys Res Lett 37:1–5

    Article  Google Scholar 

  • Davie MK, Buffett BA (2001) A numerical model for the formation of gas hydrate below the seafloor. J Geophys Res Solid Earth 106(B1):497–514

    Article  Google Scholar 

  • Dickens GR, Oneil JR, Rea DK, Owen RM (1995) Dissociation of oceanic methane hydrate as a cause of the carbon-isotope excursion at the end of the paleocene. Paleoceanography 10(6):965–971

    Article  Google Scholar 

  • Duan Z, Møller N, Weare JH (1992) An equation of state for the CH4–CO2–H2O system: I. Pure systems from 0 to 1000 °C and 0 to 800 bar. Geochim Cosmochim Acta 56:2605–2617

    Article  Google Scholar 

  • Formolo MJ, Lyons TW, Zhang CL, Kelley C, Sassen R, Horita J, Cole DR (2004) Quantifying carbon sources in the formation of authigenic carbonates at gas hydrate sites in the Gulf of Mexico. Chem Geol 205(3–4):253–264

    Article  Google Scholar 

  • Friend DG (1990) Viscosity surface for mixtures of methane and ethane. Cryogenics 30(2):105–112

    Article  Google Scholar 

  • Friend DG, Ely JF, Ingham H (1989) Thermophysical properties of methane. J Phys Chem Ref Data 18(2):583–638

    Article  Google Scholar 

  • Fu S, Zhu Z, Ouyang T, Qiu Y, Wei Z (2011) Geochemical changes of the terrigenous sediments in the southern South China Sea and their paleoenvironmental implications during the last 31 ky. J Oceanogr 67(3):337–346

    Article  Google Scholar 

  • Gainey SR, Madden MEE (2012) Kinetics of methane clathrate formation and dissociation under Mars relevant conditions. Icarus 218(1):513–524

    Article  Google Scholar 

  • Garg SK, Pritchett JW, Katoh A, Baba K, Fujii T (2008) A mathematical model for the formation and dissociation of methane hydrates in the marine environment. J Geophys Res Solid Earth 113(B1):1–32

    Article  Google Scholar 

  • Gieskes J, Mahn C, Day S, Martin JB, Greinert J, Rathburn T, McAdoo B (2005) A study of the chemistry of pore fluids and authigenic carbonates in methane seep environments: Kodiak Trench, Hydrate Ridge, Monterey Bay, and Eel River Basin. Chem Geol 220(3–4):329–345

    Article  Google Scholar 

  • Goni MA, Ruttenberg KC, Eglinton TI (1997) Source and contribution of terrigenous organic carbon to surface sediments in the Gulf of Mexico. Nature 389(6648):275–278

    Article  Google Scholar 

  • Haeckel M, Suess E, Wallmann K, Rickert D (2004) Rising methane gas bubbles form massive hydrate layers at the seafloor. Geochim Cosmochim Acta 68(21):4335–4345

    Article  Google Scholar 

  • Han X, Suess E, Huang Y, Wu N, Bohrrnann G, Su X, Eisenhauer A, Rehder G, Fang Y (2008) Jiulong methane reef: microbial mediation of seep carbonates in the South China Sea. Mar Geol 249(3–4):243–256

    Article  Google Scholar 

  • Han X, Yang K, Huang Y (2013) Origin and nature of cold seep in northeastern Dongsha area, South China Sea: evidence from chimney-like seep carbonates. Chin Sci Bull 58(30):3689–3697

    Article  Google Scholar 

  • Han X, Suess E, Liebetrau V, Eisenhauer A, Huang Y (2014) Past methane release events and environmental conditions at the upper continental slope of the South China Sea: constraints by seep carbonates. Int J Earth Sci 10(3):1873–1877

    Article  Google Scholar 

  • Heeschen KU, Collier RW, de Angelis MA, Suess E, Rehder G, Linke P, Klinkhammer GP (2005) Methane sources, distributions, and fluxes from cold vent sites at Hydrate Ridge, Cascadia Margin. Glob Biogeochem Cycles 19(2):1–19

    Google Scholar 

  • Helgerud MB, Waite WF, Kirby SH, Nur A (2003) Measured temperature and pressure dependence of V-p and V-s in compacted, polycrystalline sI methane and sII methane-ethane hydrate. Can J Phys 81(1–2):47–53

    Article  Google Scholar 

  • Hester KC, Brewer PG (2009) Clathrate hydrates in nature. Annu Rev Marine Sci 1:303–327

    Article  Google Scholar 

  • Hinrichs K-U, Boetius A (2002) The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry. In: Wefer G, Billet D, Hebbeln D, Jørgensen BB, Schlüter M, van Weering TCE (eds) Ocean margin systems. Springer, Berlin, pp 457–477

    Chapter  Google Scholar 

  • Jain AK, Juanes R (2009) Preferential mode of gas invasion in sediments: grain-scale mechanistic model of coupled multiphase fluid flow and sediment mechanics. J Geophys Res Solid Earth 114:1–19

    Article  Google Scholar 

  • Jian ZM (1998) Stable isotopic records of the glacial deep-water properties in the South China Sea. Sci Chin Ser D Earth Sci 41(4):337–344

    Article  Google Scholar 

  • Jian ZM, Zhao QH, Cheng XR, Wang JL, Wang PX, Su X (2003) Pliocene-Pleistocene stable isotope and paleoceanographic changes in the northern South China Sea. Palaeogeogr Palaeoclimatol Palaeoecol 193(3–4):425–442

    Article  Google Scholar 

  • Judd AG, Hovland M, Dimitrov LI, Garcia-Gil S, Jukes V (2002) The geological methane budget at Continental Margins and its influence on climate change. Geofluids 2(2):109–126

    Article  Google Scholar 

  • Kiel S (2009) Global hydrocarbon seep-carbonate precipitation correlates with deep-water temperatures and eustatic sea-level fluctuations since the Late Jurassic. Terra Nova 21(4):279–284

    Article  Google Scholar 

  • Klapp SA (2009) Natural gas hydrates—from the microstructure towards a geological understanding. Ph. D Dissertation, Bremen University, Bremen

    Google Scholar 

  • Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334

    Article  Google Scholar 

  • Kumar A, Maini B, Bishnoi PR, Clarke M, Zatsepina O, Srinivasan S (2010) Experimental determination of permeability in the presence of hydrates and its effect on the dissociation characteristics of gas hydrates in porous media. J Petrol Sci Eng 70(1–2):109–117

    Google Scholar 

  • Kvenvolden KA (1993) Gas hydrates—geological perspective and global change. Rev Geophys 31(2):173–187

    Article  Google Scholar 

  • Kvenvolden KA (2002) Methane hydrate in the global organic carbon cycle. Terra Nova 14(5):302–306

    Article  Google Scholar 

  • Kvenvolden KA, Rogers BW (2005) Gaia’s breath—global methane exhalations. Mar Pet Geol 22(4):579–590

    Article  Google Scholar 

  • Kwon TH, Cho GC, Santamarina JC (2008) Gas hydrate dissociation in sediments: pressure–temperature evolution. Geochem Geophys Geosyst 9:1–14

    Google Scholar 

  • Lee JY, Santamarina JC, Ruppel C (2010) Volume change associated with formation and dissociation of hydrate in sediment. Geochem Geophys Geosyst 11:1–13

    Google Scholar 

  • Leifer I, MacDonald I (2003) Dynamics of the gas flux from shallow gas hydrate deposits: interaction between oily hydrate bubbles and the oceanic environment. Earth Planet Sci Lett 210(3–4):411–424

    Article  Google Scholar 

  • Leifer I, Patro RK (2002) The bubble mechanism for methane transport from the shallow sea bed to the surface: a review and sensitivity study. Cont Shelf Res 22(16):2409–2428

    Article  Google Scholar 

  • Leverett MC, Member AIME (1941) Capillary behavior in porous solids: petroleum transactions. AIME 142:152–169

    Article  Google Scholar 

  • Li Q, Wang P, Zhao Q, Shao L, Zhong G, Tian J, Cheng X, Han Z, Su X (2006) A 33 Ma lithostratigraphic record of tectonic and paleoceanographic evolution of the South China Sea. Mar Geol 230(3–4):217–235

    Article  Google Scholar 

  • Link DD, Ladner EP, Elsen HA, Taylor CE (2003) Formation and dissociation studies for optimizing the uptake of methane by methane hydrates. Fluid Phase Equilib 211(1):1–10

    Article  Google Scholar 

  • Liu XL, Flemings PB (2007) Dynamic multiphase flow model of hydrate formation in marine sediments. J Geophys Res Solid Earth 112(B3):1–23

    Article  Google Scholar 

  • Liu L, Wu N (2014) Simulation of advective methane flux and AOM in Shenhu area, the northern South China Sea. Environ Earth Sci 71(2):697–707

    Article  Google Scholar 

  • Mienert J, Vanneste M, Bunz S, Andreassen K, Haflidason H, Sejrup HP (2005) Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide. Mar Pet Geol 22(1–2):233–244

    Article  Google Scholar 

  • Mogollon JM, L’Heureux I, Dale AW, Regnier P (2009) Methane gas-phase dynamics in marine sediments: a model study. Am J Sci 309(3):189–220

    Article  Google Scholar 

  • Mogollon JM, Dale AW, Fossing H, Regnier P (2012) Timescales for the development of methanogenesis and free gas layers in recently-deposited sediments of Arkona Basin (Baltic Sea). Biogeosciences 9(5):1915–1933

    Article  Google Scholar 

  • Moridis GJ, Kowalsky MB, Pruess K (2005) TOUGH-Fx/HYDRATE v1.0 user’s manual: a code for the simulation of system behavior in hydrate-bearing geologic media. In: LBNL (ed)

  • Nazridoust K, Ahmadi G (2007) Computational modeling of methane hydrate dissociation in a sandstone core. Chem Eng Sci 62(22):6155–6177

    Article  Google Scholar 

  • Pang X, Yang SK, Zhu M, Li JS (2004) Deep-water fan systems and petroleum resources on the northern slope of the South China Sea. Acta Geol Sin Engl Ed 78(3):626–631

    Google Scholar 

  • Pang X, Chen C, Zhu M, He M, Shen J, Lian S, Wu X, Shao L (2009) Baiyun movement: a significant tectonic event on oligocene/miocene boundary in the northern south china sea and its regional implications. J Earth Sci 20(1):49–56

    Article  Google Scholar 

  • Pautot G, Rangin C, Briais A, Tapponnier P, Beuzart P, Lericolais G, Mathieu X, Wu JL, Han SQ, Li HX, Lu YX, Zhao JC (1986) Spreading Direction in the Central South China Sea. Nature 321(6066):150–154

    Article  Google Scholar 

  • Petrunin GI, Popov VG, Soskov AV (2008) Thermal properties of the bottom sediments of the Black sea. Mosc Univ Phys Bull 63(1):62–67

    Google Scholar 

  • Pinder GF, Gray WG (2008) Essentials of multiphase flow and transport in porous media. Wiley, Hoboken

    Book  Google Scholar 

  • Qian J (1999) Paleooceanographic study of the South China Sea since later Quaternary. Science Publisher (China), Beijing

    Google Scholar 

  • Reagan, M. T., and Moridis, G. J., 2007, Oceanic gas hydrate instability and dissociation under climate change scenarios: Geophysical Research Letters, v. 34, no. 22

  • Reagan MT, Moridis GJ (2008) Dynamic response of oceanic hydrate deposits to ocean temperature change. J Geophys Res Oceans 113(C12):1–21

    Article  Google Scholar 

  • Reagan MT, Moridis GJ (2009) Large-scale simulation of methane hydrate dissociation along the West Spitsbergen Margin. Geophys Res Lett 36:1–5

    Article  Google Scholar 

  • Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107(2):486–513

    Article  Google Scholar 

  • Reimers CE, Alleau Y, Bauer JE, Delaney J, Girguis PR, Schrader PS, Stecher HA III (2013) Redox effects on the microbial degradation of refractory organic matter in marine sediments. Geochim Cosmochim Acta 121:582–598

    Article  Google Scholar 

  • Schmidt KAG, Folas GK, Kvamme B (2007) Calculation of the interfacial tension of the methane-water system with the linear gradient theory. Fluid Phase Equilib 261(1–2):230–237

    Article  Google Scholar 

  • Seol Y, Kneafsey TJ (2011) Methane hydrate induced permeability modification for multiphase flow in unsaturated porous media. J Geophys Res Solid Earth 116:1–15

    Article  Google Scholar 

  • Sivan O, Schrag DP, Murray RW (2007) Rates of methanogenesis and methanotrophy in deep-sea sediments. Geobiology 5(2):141–151

    Article  Google Scholar 

  • Sloan ED, Kon CA (2008) Clathrate hydrates of natural gases. CRC Press Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Solomon EA, Kastner M, MacDonald IR, Leifer I (2009) Considerable methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexico. Nat Geosci 2:561–565

    Article  Google Scholar 

  • Suess E, Huang Y, Wu N, Han X, Su X (2004) South China Sea continental margin: geological methane budget and environmental effects of methane emission and gas hydrate, FS Sonne Curise Report SO 177

  • Sun R, Duan Z (2007) An accurate model to predict the thermodynamic stability of methane hydrate and methane solubility in marine environments. Chem Geol 244(1–2):248–262

    Article  Google Scholar 

  • Sun XF, Mohanty KK (2006) Kinetic simulation of methane hydrate formation and dissociation in porous media. Chem Eng Sci 61(11):3476–3495

    Article  Google Scholar 

  • Sun XJ, Li X, Beug HJ (1999) Pollen distribution in hemipelagic surface sediments of the South China Sea and its relation to modern vegetation distribution. Mar Geol 156(1–4):211–226

    Article  Google Scholar 

  • Sun CY, Hen GJ, Yang LY (2004) Interfacial tension of methane plus water with surfactant near the hydrate formation conditions. J Chem Eng Data 49(4):1023–1025

    Article  Google Scholar 

  • Svensen H, Planke S, Malthe-Sorenssen A, Jamtveit B, Myklebust R, Eidem TR, Rey SS (2004) Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429(6991):542–545

    Article  Google Scholar 

  • Tishchenko P, Hensen C, Wallmann K, Wong CS (2005) Calculation of the stability and solubility of methane hydrate in seawater. Chem Geol 219(1–4):37–52

    Article  Google Scholar 

  • Tong H, Feng D, Cheng H, Yang S, Wang H, Min AG, Edwards RL, Chen Z, Chen D (2013) Authigenic carbonates from seeps on the northern continental slope of the South China Sea: new insights into fluid sources and geochronology. Mar Pet Geol 43:260–271

    Article  Google Scholar 

  • Uchida T, Takeya S, Chuvilin EM, Ohmura R, Nagao J, Yakushev VS, Istomin VA, Minagawa H, Ebinuma T, Narita H, (2004) Decomposition of methane hydrates in sand, sandstone, clays, and glass beads. J Geophys Res Solid Earth 109(B5):1–12

    Article  Google Scholar 

  • Udell KS, Fitch JS (1985) Heat and mass transfer in capillary porous media considering evaporation, condensation and non-condensible gas effects, heat transfer in porous media and particulate flows, ASME HTD-46 Denver

  • Ugur I, Demirdag S (2006) Investigation of the relation between the specific heat capacity and material properties of some natural building and facing stones. Int J Rock Mech Min Sci 43(5):831–835

    Article  Google Scholar 

  • Vafaei MT, Kvamme B, Chejara A, Jemai K (2012) Nonequilibrium modeling of hydrate dynamics in reservoir. Energy Fuels 26(6):3564–3576

    Article  Google Scholar 

  • van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  • Voronov VP, Gorodetskii EE, Safonov SS (2007) Thermodynamic properties of methane hydrate in quartz powder. J Phys Chem B 111(39):11486–11496

    Article  Google Scholar 

  • Wagner W, Pruss A (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31(2):387–535

    Article  Google Scholar 

  • Wallmann K, Aloisi G, Haeckel M, Obzhirov A, Pavlova G, Tishchenko P (2006) Kinetics of organic matter degradation, microbial methane generation, and gas hydrate formation in anoxic marine sediments. Geochim Cosmochim Acta 70(15):3905–3927

    Article  Google Scholar 

  • Wang PX (1995) The South China Sea since 150 Ma. Tongji University Publisher, Shanghai

    Google Scholar 

  • Wang PX, Sun XJ (1994) Last glacial maximum in china—comparison between land and sea. Catena 23(3–4):341–353

    Google Scholar 

  • Wang JL, Zhao QH, Chen XR, Wang RJ, Wang PX (2000) Age estimation of the mid-Pleistocene microtektite event in the South China Sea: a case showing the complexity of the sea-land correlation. Chin Sci Bull 45(24):2277–2280

    Article  Google Scholar 

  • Westerhold T, Roehl U, Donner B, McCarren HK, Zachos JC (2011) A complete high-resolution Paleocene benthic stable isotope record for the central Pacific (ODP Site 1209). Paleoceanography 26:1–13

    Article  Google Scholar 

  • Winkelmann D, Knies J (2005) Recent distribution and accumulation of organic carbon on the continental margin west off Spitsbergen. Geochem Geophys Geosyst 6:1–22

    Google Scholar 

  • Wu N, Liu L (2011) Review of marine gas hydrate research in China. In: Proceedings of the 7th international conference on gas hydrates, Edinburgh, Scotland, United Kingdom

  • Wu N, Yang S, Wang H, Liang J, Gong Y, Lu Z, Wu D, Guang H (2009) Gas-bearing fluid influx sub-system for gas hydrate geological system in Shenhu Area, Northern South China Sea. Chin J Geophys Chin Ed 52(6):1641–1650

    Google Scholar 

  • Wu N, Zhang H, Yang S, Zhang G, Liang J, Lu J, Su X, Schultheiss P, Holland M, Zhu Y (2011) Gas hydrate systems of Shenhu Area, Northern South China Sea, geochemical results. J Geol Res

  • Xu W, Germanovich LN (2006) Excess pore pressure resulting from methane hydrate dissociation in marine sediments: a theoretical approach. J Geophys Res 111(B1). doi:10.1029/2004JB003600

  • Xu WY, Ruppel C (1999) Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments. J Geophys Res-Solid Earth 104(B3):5081–5095

    Article  Google Scholar 

  • Yang S, Schultheiss P (2014) A complex gas hydrate system in the Dongsha area, South China sea: results from Drilling expedition GMGS2. In: Proceedings of the 8th international conference on gas hydrates, Beijing, China

  • Yao L, Xue B, Yao M, Chen R, Zhao Q, Zhang H, Yang D (2007) By using UK37 index to study sea surface paleotemperatures in South China Sea since the Last Glacial Maximum. J Marine Sci 25(4):24–31

    Google Scholar 

  • Yao Y, Harff J, Meyer M, Zhan W (2009) Reconstruction of paleocoastlines for the northwestern South China Sea since the last glacial maximum. Sci Chin Ser D Earth Sci 52(8):1127–1136

    Article  Google Scholar 

  • Zachos JC, McCarren H, Murphy B, Roehl U, Westerhold T (2010) Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: implications for the origin of hyperthermals. Earth Planet Sci Lett 299(1–2):242–249

    Article  Google Scholar 

  • Zhang H, Yang S, Wu N, Su X, Holland M, Schultheiss P, Rose K, Butler H, Humphrey G (2007) Successful and surprising results for China’s first gas hydrate drilling expedition. Fire Ice Fall:6–9

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the NSFC Foundation of China (No. 41376076). The aAuthors are grateful for the External Cooperation Program of the Chinese Academy of Sciences (GJHZ1404). Additionally, co-funding from the Ministry of Education of China through the Starting Foundation for Talents Returning from Overseas and Special project of National Marine Geology (GZH2012006003) by the Chinese Geology Survey is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Shao, H., Fu, S. et al. Theoretical simulation of the evolution of methane hydrates in the case of Northern South China Sea since the last glacial maximum. Environ Earth Sci 75, 596 (2016). https://doi.org/10.1007/s12665-015-5125-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-5125-9

Keywords

Navigation