Skip to main content
Log in

Numerical modeling of early diagenetic processes in Haiyang 4 Area in the northern slope of the South China Sea

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Early diagenesis affects the distribution of solutes and minerals in unconsolidated sediments. The investigation of diagenesis is critical to understanding the geochemical transformation and benthic fluxes of elements. During the cruise mission SO-177 in 2004, gravity coring samples were recovered in the Haiyang 4 Area of the northern slope of the South China Sea (SCS). The geochemical concentrations in interstitial water were determined onboard. The 1D C.CANDI reactive transport software was used to model the early diagenesis processes at four sites: 56-GC-3, 70-GC-9, 94-GC-11, and 118-GC-13. All of the simulations reproduced concentration profiles that matched the measurements with the implemented geochemical reactions. The degradation of organic carbon and anaerobic oxidation of methane (AOM) primarily determine the distribution of solutes in the working area. The degradation is active in the top 150 cm, and AOM is vigorous at depths below 200 cm. The local advective flux, sediment rate, and kinetic reaction constants of organic matter, methane and sulfate were calibrated based on the existing concentrations of pore water solutes. Geochemical reactions in this area occur in considerably deeper layers compared to depths cited in the literature. The model results provide evidence for the existence of deep hydrocarbon reservoirs that provide methane to the upper sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Algar CK, Boudreau BP (2009) Transient growth of an isolated bubble in muddy, fine-grained sediments. Geochim Cosmochim Acta 73(9):2581–2591

    Article  Google Scholar 

  • Arndt S, Jorgensen BB, LaRowe DE, Middelburg JJ, Pancost RD, Regnier P (2013) Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth Sci Rev 123:53–86

    Article  Google Scholar 

  • Arning ET, Fu Y, van Berk W, Schulz H-M (2011) Organic carbon remineralisation and complex, early diagenetic solid-aqueous solution-gas interactions: case study ODP Leg 204, Site 1246 (Hydrate Ridge). Mar Chem 126(1–4):120–131

    Article  Google Scholar 

  • Berner RA (1980) Early diagenesis—a theoretical approach. Princeton Series in Geochemistry. Princeton University Press, Princeton, p 241

    Google Scholar 

  • Berner RA, Westrich JT (1985) Bioturbation and the eraly diagenesis of carbon and sulfur. Am J Sci 285(3):193–206

    Article  Google Scholar 

  • Boetius A, Suess E (2004) Hydrate Ridge: a natural laboratory for the study of microbial life fueled by methane from near-surface gas hydrates. Chem Geol 205(3–4):291–310

    Article  Google Scholar 

  • Boudreau BP (1996) A method-of-lines code for carbon and nutrient diagenesis in aquatic sediments. Comput Geosci 22(5):479–496

    Article  Google Scholar 

  • Boudreau BP (1997) Diagenetic models and their implementation. Springer, Berlin, p 424

    Book  Google Scholar 

  • Briais A, Tapponnier P, Pautot G (1989) Constraints of sea beam data on crustal fabrics and seafloor spreading in the South China Sea. Earth Planet Sci Lett 95(3–4):307–320

    Article  Google Scholar 

  • Canfield DE, Jorgensen BB, Fossing H, Glud R, Gundersen J, Ramsing NB, Thamdrup B, Hansen JW, Nielsen LP, Hall POJ (1993) Pathways of organic-carbon oxidation in 3 continental-margin sediments. Mar Geol 113(1–2):27–40

    Article  Google Scholar 

  • Chen GC, Tam NFY, Ye Y (2012) Spatial and seasonal variations of atmospheric N2O and CO2 fluxes from a subtropical mangrove swamp and their relationships with soil characteristics. Soil Biol Biochem 48:175–181

    Article  Google Scholar 

  • Chuang P-C, Dale AW, Wallmann K, Haeckel M, Yang TF, Chen N-C, Chen H-C, Chen H-W, Lin S, Sun C-H, You C-F, Horng C-S, Wang Y, Chung S-H (2013) Relating sulfate and methane dynamics to geology: accretionary prism offshore SW Taiwan. Geochemi Geophys Geosyst 14(7):2523–2545

    Article  Google Scholar 

  • Dale AW, Aguilera DR, Regnier P, Fossing H, Knab NJ, Jorgensen BB (2008) Seasonal dynamics of the depth and rate of anaerobic oxidation of methane in Aarhus Bay (Denmark) sediments. J Mar Res 66(1):127–155

    Article  Google Scholar 

  • Dale AW, Bruchert V, Alperin M, Regnier P (2009) An integrated sulfur isotope model for Namibian shelf sediments. Geochim Cosmochim Acta 73(7):1924–1944

    Article  Google Scholar 

  • Dale AW, Bertics VJ, Treude T, Sommer S, Wallmann K (2013) Modeling benthic-pelagic nutrient exchange processes and porewater distributions in a seasonally hypoxic sediment: evidence for massive phosphate release by Beggiatoa? Biogeosciences 10(2):629–651

    Article  Google Scholar 

  • Dhakar SP, Burdige DJ (1996) Coupled, non-linear, steady state model for early diagenetic processes in pelagic sediments. Am J Sci 296(3):296–330

    Article  Google Scholar 

  • Dixit S, Van Cappellen P, van Bennekom AJ (2001) Processes controlling solubility of biogenic silica and pore water build-up of silicic acid in marine sediments. Mar Chem 73(3–4):333–352

    Article  Google Scholar 

  • Feng D, Chen DF (2015) Authigenic carbonates from an active cold seep of the northern South China Sea: new insights into fluid sources and past seepage activity. Deep Sea Res Part II Top Stud Oceanogr 122:74–83

    Article  Google Scholar 

  • Fischer D, Mogollon JM, Strasser M, Pape T, Bohrmann G, Fekete N, Spiess V, Kasten S (2013) Subduction zone earthquake as potential trigger of submarine hydrocarbon seepage. Nat Geosci 6(8):647–651

    Article  Google Scholar 

  • Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V (1979) Early oxidation of organic-matter in Pelagic sediments of the Eastern Equatoria Atlantic—Subboxic diagenesis. Geochim Cosmochim Acta 43(7):1075–1090

    Article  Google Scholar 

  • Gaye B, Wiesner MG, Lahajnar N (2009) Nitrogen sources in the South China Sea, as discerned from stable nitrogen isotopic ratios in rivers, sinking particles, and sediments. Mar Chem 114(3–4):72–85

    Article  Google Scholar 

  • Goni MA, Ruttenberg KC, Eglinton TI (1997) Source and contribution of terrigenous organic carbon to surface sediments in the Gulf of Mexico. Nature 389(6648):275–278

    Article  Google Scholar 

  • Guinasso NL, Schink DR (1975) Quantitative estiates of biological mixing rates in abyssal sediments. J Geophys Res Oceans Atmospheres 80(21):3032–3043

    Article  Google Scholar 

  • Haeckel M, Suess E, Wallmann K, Rickert D (2004) Rising methane gas bubbles form massive hydrate layers at the seafloor. Geochim Cosmochim Acta 68(21):4335–4345

    Article  Google Scholar 

  • Haeckel M, Boudreau BP, Wallmann K (2007) Bubble-induced porewater mixing: a 3-D model for deep porewater irrigation. Geochim Cosmochim Acta 71(21):5135–5154

    Article  Google Scholar 

  • Heeschen KU, Collier RW, de Angelis MA, Suess E, Rehder G, Linke P, Klinkhammer GP (2005) Methane sources, distributions, and fluxes from cold vent sites at Hydrate Ridge, Cascadia Margin. Glob Biogeochem Cycles 19(2):1–19

    Article  Google Scholar 

  • Hensen C, Landenberger H, Zabel M, Gundersen JK, Glud RN, Schulz HD (1997) Simulation of early diagenetic processes in continental slope sediments off southwest Africa: the computer model CoTAM tested. Mar Geol 144(1–3):191–210

    Article  Google Scholar 

  • Huang Y, Suess E, Wu N (2008) Methane and gas hydrate geology of the Northern South China Sea. Sino-German Cooperative DO-177cruise report

  • Li C-F, Zhou Z, Li J, Chen B, Geng J (2008) Magnetic zoning and seismic structure of the South China Sea ocean basin. Mar Geophys Res 29(4):223–238

    Article  Google Scholar 

  • Liu L, Wu N (2014) Simulation of advective methane flux and AOM in Shenhu area, the northern South China Sea. Environ Earth Sci 71(2):697–707

    Article  Google Scholar 

  • Liu X, Yan J (2011) Advances in the Role of Iron in Marine Sediments during Early Diagenesis. Adv Earth Sci 26(5):482–492 (in Chinese)

    Google Scholar 

  • Luff R (2000) Numerical modeling of benthic processes in the deep Arabian Sea. Deep Sea Res II 47:3039–3072

    Article  Google Scholar 

  • Luff R, Wallmann K (2003) Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: numerical modeling and mass balances. Geochim Cosmochim Acta 67(18):3403–3421

    Article  Google Scholar 

  • Luff R, Haeckel M, Wallmann K (2001) Robust and fast FORTRAN and MATLAB (R) libraries to calculate pH distributions in marine systems. Comput Geosci 27(2):157–169

    Article  Google Scholar 

  • Luff R, Wallmann K, Aloisi G (2004) Numerical modeling of carbonate crust formation at cold vent sites: significance for fluid and methane budgets and chemosynthetic biological communities. Earth Planet Sci Lett 221(1–4):337–353

    Article  Google Scholar 

  • Luff R, Greinert J, Wallmann K, Klaucke I, Suess E (2005) Simulation of long-term feedbacks from authigenic carbonate crust formation at cold vent sites. Chem Geol 216(1–2):157–174

    Article  Google Scholar 

  • Meile C, Koretsky CM, Van Cappellen P (2001) Quantifying bioirrigation in aquatic sediments: an inverse modeling approach. Limnol Oceanogr 46(1):164–177

    Article  Google Scholar 

  • Meysman FJR, Middelburg JJ, Herman PMJ, Heip CHR (2003) Reactive transport in surface sediments. II. Media: an object-oriented problem-solving environment for early diagenesis. Comput Geosci 29(3):301–318

    Article  Google Scholar 

  • Mogollon JM, Dale AW, Fossing H, Regnier P (2012) Timescales for the development of methanogenesis and free gas layers in recently-deposited sediments of Arkona Basin (Baltic Sea). Biogeosciences 9(5):1915–1933

    Article  Google Scholar 

  • Pang X, Chen C, Zhu M, He M, Shen J, Lian S, Wu X, Shao L (2009) Baiyun movement: a significant tectonic event on Oligocene/Miocene boundary in the northern South China Sea and its regional implications. J Earth Sci 20(1):49–56

    Article  Google Scholar 

  • Pautot G, Rangin C, Briais A, Tapponnier P, Beuzart P, Lericolais G, Mathieu X, Wu JL, Han SQ, Li HX, Lu YX, Zhao JC (1986) Spreading direction in the central South China Sea. Nature 321(6066):150–154

    Article  Google Scholar 

  • Reed DC, Slomp CP, de Lange GJ (2011) A quantitative reconstruction of organic matter and nutrient diagenesis in Mediterranean Sea sediments over the Holocene. Geochim Cosmochim Acta 75(19):5540–5558

    Article  Google Scholar 

  • Regnier P, Dale AW, Arndt S, LaRowe DE, Mogollon J, Van Cappellen P (2011) Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: a modeling perspective. Earth Sci Rev 106(1–2):105–130

    Article  Google Scholar 

  • Reimers CE, Suess E (1983) The partitioning of organic-carbon fluxes and sedimentary organic-matter decomposition rates in the ocean. Mar Chem 13(2):141–168

    Article  Google Scholar 

  • Sauter EJ, Schluter M, Suess E (2001) Organic carbon flux and remineralization in surface sediments from the northern North Atlantic derived from pore-water oxygen microprofiles. Deep Sea Res Part I-Oceanogr Res Pap 48(2):529–553

    Article  Google Scholar 

  • Schluter M, Sauter E, Hansen HP, Suess E (2000) Seasonal variations of bioirrigation in coastal sediments: modelling of field data. Geochim Cosmochim Acta 64(5):821–834

    Article  Google Scholar 

  • Scholz F, Hensen C, Noffke A, Rohde A, Liebetrau V, Wallmann K (2011) Early diagenesis of redox-sensitive trace metals in the Peru upwelling area—response to ENSO-related oxygen fluctuations in the water column. Geochim Cosmochim Acta 75(22):7257–7276

    Article  Google Scholar 

  • Schonfeld J, Kudrass HR (1993) Hemiplagic sediment accumulation rates in the South China Sea related to late Quaternary sea-level changes S. Quatern Res 40(3):368–379

    Article  Google Scholar 

  • Schulz HD, Dahmke A, Schinzel U, Wallmann K, Zabel M (1994) Early diagenetic processes, fluxes, and reaction-rates in sediments of the South-Atlantic. Geochim Cosmochim Acta 58(9):2041–2060

    Article  Google Scholar 

  • Shipboard Scientific Party (2000) Leg 184 summary: exploring the Asian monsoon through drilling in the South China Sea. In Wang P, Prell WL, Blum P et al., Proc. ODP, Init. Repts., 184. College Station, TX (Ocean Drilling Program), pp 1–77

  • Sivan O, Schrag DP, Murray RW (2007) Rates of methanogenesis and methanotrophy in deep-sea sediments. Geobiology 5(2):141–151

    Article  Google Scholar 

  • Smith CR, Rabouille C (2002) What controls the mixed-layer depth in deep-sea sediments? the importance of POC flux. Limnol Oceanogr 47(2):418–426

    Article  Google Scholar 

  • Suess E (1980) Particulate organic-carbon flux in the oceans—surface productivity and oxygen utilization. Nature 288(5788):260–263

    Article  Google Scholar 

  • Suess E, Huang Y, Abegg F, Eisenhauer A, Pfannkuche O, Su X, Tao J, Wu N, Han X, Bohrmann G (2005) Sino-German Cooperative Project, South China Sea: distribution, formation and effect of methane & gas hydrate on the environment. Cruise report SO177

  • Sun Y, Wu S, Dong D, Ludmann T, Gong Y (2012) Gas hydrates associated with gas chimneys in fine-grained sediments of the northern South China Sea. Mar Geol 311:32–40

    Article  Google Scholar 

  • Treude T, Boetius A, Knittel K, Wallmann K, Jorgensen BB (2003) Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean. Mar Ecol Prog Ser 264:1–14

    Article  Google Scholar 

  • van Cappellen P, Berner RA (1988) A mathematical-model for the early diagenesis of phosphorous and fluorine in marine-sediments—Apatite precipittation. Am J Sci 288(4):289–333

    Article  Google Scholar 

  • Wallmann K, Aloisi G, Haeckel M, Obzhirov A, Pavlova G, Tishchenko P (2006) Kinetics of organic matter degradation, microbial methane generation, and gas hydrate formation in anoxic marine sediments. Geochim Cosmochim Acta 70(15):3905–3927

    Article  Google Scholar 

  • Wang S, Yan B, Yan W (2013) Tracing seafloor methane emissions with benthic foraminifera in the Baiyun Sag of the northern South China Sea. Environ Earth Sci 70(3):1143–1150

    Article  Google Scholar 

  • Yang Q, Zhou H (2004) Bioturbation in near-surface sediments from the COMRA Polymetallic Nodule Area: evidence from excess Pb-210 measurements. China Sci Bull 49(23):2538–2542

    Article  Google Scholar 

  • Yang Q, Zhou H, Fuwu JI, Wang H, Yang W (2008) Bioturbation in seabed sediments and its effects on marine sedimentary processes and records. Adv Earth Sci 23(9):932–941

    Google Scholar 

  • Zhang Y, Sun Z, Zhou D, Guo X, Shi X, Wu X, Pang X (2008) Stretching characteristics and its dynamic significance of the northern continental margin of South China Sea. Sci China Ser D-Earth Sci 51(3):422–430

    Article  Google Scholar 

  • Zhang G, Yang S, Zhang M, Liang J, Lu J, Holland M, Schultheiss P (2014) GMGS2 expedition investigates rich and complex gas hydrate environment in the South China Sea. Fire Ice 14(1):1–5

    Google Scholar 

  • Zhao M, Qiu X, Xia S, Xu H, Wang P, Wang TK, Lee C-S, Xia K (2010) Seismic structure in the northeastern South China Sea: S-wave velocity and Vp/Vs ratios derived from three-component OBS data. Tectonophysics 480(1–4):183–197

    Article  Google Scholar 

  • Zheng Y, Zheng H, Wang K (2010) History of sea level change since last glacial: reflected by sedimentology of core from East China Sea inner shelf. J Tongji Univ Nat Sci 38(9):1381–1386 (In Chinese)

    Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the National Natural Science Foundation of China (General Program No.41376076). Authors are grateful for the Natural Science Foundation of Guangdong Province (2015A030313718) and the External Cooperation Program of the Chinese Academy of Sciences (GJHZ1404) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Luff, R., Shao, H. et al. Numerical modeling of early diagenetic processes in Haiyang 4 Area in the northern slope of the South China Sea. Environ Earth Sci 76, 453 (2017). https://doi.org/10.1007/s12665-017-6784-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6784-5

Keywords

Navigation