Skip to main content

Advertisement

Log in

Effects of water and salinity on plant species composition and community succession in Ejina Desert Oasis, northwest China

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Ecologic patterns and community succession are generally controlled by hydrologic mechanisms, especially for plant distributions which are sensitive to habitat conditions. The hydrology characteristics of ecosystems mainly influenced plant ecological processes in water and salinity changes. In this paper, we analyzed the composition and characteristic of natural plant community, divided the plant community classes and discussed the effect of water and salinity gradients on plant species and community classes in Ejina Desert Oasis. The results demonstrated that Populus euphratica, Tamarix chinensis and Phragmites communis were the most important plant species that had the highest important values among forest, shrubs and herbaceous. Six plant community patterns were classified by cluster analysis in Ejina Desert Oasis. Species richness and species diversity were the highest near West River and East River channels of the core oasis area. The distributions of plant community were mainly influenced by the following factors: distance from river channel, groundwater level, soil water content, soil salinity and groundwater salinity. The water and salinity factors, which controlled the distributions of plant, were the main driving forces for ecosystem succession. The plant community succession is becoming toward the type of shrub + herb or low shrub with very drought-tolerant from the type of forest + shrub + herb with tall and high water consumption, when habitat conditions change from good to poor. The water gradients had more significant and more directed effect than salinity gradients on plant species and communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Baldwin AH, Mendelssohn IA (1998) Effects of salinity and water level on coastal marshes: an experimental test of disturbance as a catalyst for vegetation change. Aquat Bot 61:255–268. doi:10.1016/s0304-3770(98)00073-4

    Article  Google Scholar 

  • Brenes-Arguedas T, Coley PD, Kursar TA (2009) Pests vs. drought as determinants of plant distribution along a tropical rainfall gradient. Ecology 90:1751–1761. doi:10.1890/08-1271.1

    Article  Google Scholar 

  • Bui EN (2013) Soil salinity: a neglected factor in plant ecology and biogeography. J Arid Environ 92:14–25. doi:10.1016/j.jaridenv.2012.12.014

    Article  Google Scholar 

  • Cardinale BJ (2011) Biodiversity improves water quality through niche partitioning. Nature 472:86-U113. doi:10.1038/nature09904

    Article  Google Scholar 

  • Carling GT, Richards DC, Hoven H, Miller T, Fernandez DP, Rudd A, Pazmino E, Johnson WP (2013) Relationships of surface water, pore water, and sediment chemistry in wetlands adjacent to Great Salt Lake, Utah, and potential impacts on plant community health. Sci Total Environ 443:798–811. doi:10.1016/j.scitotenv.2012.11.063

    Article  Google Scholar 

  • Chen YN, Chen YP, Li WH, Zhang HF (2003) Response of the accumulation of proline in the bodies of Populus euphratica to the change of groundwater level at the lower reaches of Tarim River. Chin Sci Bull 48:1995–1999. doi:10.1360/02wd0569

    Google Scholar 

  • Chen YN, Zilliacus H, Li WH, Zhang HF, Chen YP (2006) Ground-water level affects plant species diversity along the lower reaches of the Tarim river, Western China. J Arid Environ 66:231–246. doi:10.1016/j.jaridenv.2005.11.009

    Article  Google Scholar 

  • Devoto M, Medan D, Roig-Alsina A, Montaldo NH (2009) Patterns of species turnover in plant-pollinator communities along a precipitation gradient in Patagonia (Argentina). Austral Ecol 34:848–857. doi:10.1111/j.1442-9993.2009.01987.x

    Article  Google Scholar 

  • Fan XM, Pedroli B, Liu GH, Liu HG, Song CY, Shu LC (2011) Potential plant species distribution in the Yellow River Delta under the influence of groundwater level and soil salinity. Ecohydrology 4:744–756. doi:10.1002/eco.164

    Article  Google Scholar 

  • Feng Q, Liu W, Su YH, Zhang YW, Si JH (2004) Distribution and evolution of water chemistry in Heihe River basin. Environ Geol 45:947–956. doi:10.1007/s00254-003-0950-7

    Article  Google Scholar 

  • Feng Q, Su YH, Si JH, Chang ZQ, Xi HY, Guo R, Chen LJ, Huo H, Qin YY (2013) Ecohydrological transect survey of Heihe River Basin. Adv Earth Sci 28:187–196

    Google Scholar 

  • Fu A, Chen Y, Li W (2013) Water use strategies of the desert riparian forest plant community in the lower reaches of Heihe River Basin, China. Sci China Earth Sci 57:1293–1305. doi:10.1007/s11430-013-4680-8

    Article  Google Scholar 

  • Giliba RA, Boon EK, Musamba EM, Kashindye AM, Shayo PF (2011) Composition, richness and diversity in Miombo. J Biodivers 2:1–7

    Google Scholar 

  • Glaser PH, Janssens JA, Siegel DI (1990) The response of vegetation to chemical and hydrological gradients in the Lost River Peatland, Northern Minnesota. J Ecol 78:1021–1048. doi:10.2307/2260950

    Article  Google Scholar 

  • González-Alcaraz MN, Jiménez-Cárceles FJ, Álvarez Y, Álvarez-Rogel J (2014) Gradients of soil salinity and moisture, and plant distribution, in a Mediterranean semiarid saline watershed: a model of soil–plant relationships for contributing to the management. Catena 115:150–158. doi:10.1016/j.catena.2013.11.011

    Article  Google Scholar 

  • Guha H, Panday S (2012) Impact of sea level rise on groundwater salinity in a coastal community of South Florida. J Am Water Resour Assoc 48:510–529. doi:10.1111/j.1752-1688.2011.00630.x

    Article  Google Scholar 

  • Hao XM, Chen YN, Guo B, Ma JX (2013) Hydraulic redistribution of soil water in Populus euphratica Oliv. in a central Asian desert riparian forest. Ecohydrology 6:974–983. doi:10.1002/eco.1338

    Article  Google Scholar 

  • Jiang XH, Liu CM (2010) The influence of water regulation on vegetation in the lower Heihe River. J Geogr Sci 20:701–711. doi:10.1007/s11442-010-0805-6

    Article  Google Scholar 

  • Kammer PM, Schob C, Eberhard G, Gallina R, Meyer R, Tschanz C (2013) The relationship between soil water storage capacity and plant species diversity in high alpine vegetation. Plant Ecol Divers 6:457–466. doi:10.1080/17550874.2013.783142

    Article  Google Scholar 

  • Kang E, Li X, Zhang J, Xinglin H (2004) Water resources relating to desertification in the Hexi area of Gansu Province, China. J Glaciol Geocryol 26:657–667 (In English Abstract)

    Google Scholar 

  • Khan MI, Khan MA, Khizar T (1976) Plant-growth regulators from species differing in salt tolerance as affected by soil-salinity. Plant Soil 45:267–271. doi:10.1007/bf00011149

    Article  Google Scholar 

  • Lamontagne S, Cook PG, O’Grady A, Eamus D (2005) Groundwater use by vegetation in a tropical savanna riparian zone (Daly River, Australia). J Hydrol 310:280–293. doi:10.1016/j.jhydrol.2005.01.009

    Article  Google Scholar 

  • Laudicina VA, De Pasquale C, Conte P, Badalucco L, Alonzo G, Palazzolo E (2012) Effects of afforestation with four unmixed plant species on the soil-water interactions in a semiarid Mediterranean region (Sicily, Italy). J Soils Sediments 12:1222–1230. doi:10.1007/s11368-012-0522-0

    Article  Google Scholar 

  • Lawton J (1985) Community structure and the niche—giller, Ps. Nature 314:39. doi:10.1038/314039a0

    Article  Google Scholar 

  • Leps J, Smilauer P (2003) Multivariate analysis of ecological data using CANOCO. United States of America by Cambridge University Press, New York

    Book  Google Scholar 

  • Li W, Zhou H, Fu A, Chen Y (2013) Ecological response and hydrological mechanism of desert riparian forest in inland river, northwest of China. Ecohydrology 6:949–955. doi:10.1002/eco.1385

    Article  Google Scholar 

  • Maharjan SK, Poorter L, Holmgren M, Bongers F, Wieringa JJ, Hawthorne WD (2011) Plant functional traits and the distribution of west African rain forest trees along the rainfall gradient. Biotropica 43:552–561. doi:10.1111/j.1744-7429.2010.00747.x

    Article  Google Scholar 

  • McIlroy SK, Allen-Diaz BH (2012) Plant community distribution along water table and grazing gradients in montane meadows of the Sierra Nevada Range (California, USA). Wetlands Ecol Manage 20:287–296. doi:10.1007/s11273-012-9253-7

    Article  Google Scholar 

  • Närhi P, Middleton M, Hyvönen E, Piekkari M, Sutinen R (2010) Central boreal mire plant communities along soil nutrient potential and water content gradients. Plant Soil 331:257–264. doi:10.1007/s11104-009-0250-4

    Article  Google Scholar 

  • Naz N, Hameed M, Ahmad MSA, Ashraf M, Arshad M (2010) Is soil salinity one of the major determinants of community structure under arid environments? Community Ecol 11:84–90. doi:10.1556/comec.11.2010.1.12

    Article  Google Scholar 

  • Nucci A, Angiolini C, Landi M, Bacchetta G (2012) Influence of bedrock-alluvial transition on plant species distribution along a Mediterranean river corridor. Plant Biosyst 146:564–575. doi:10.1080/11263504.2012.670669

    Google Scholar 

  • Onkware AO (2000) Effect of soil salinity on plant distribution and production at Loburu Delta, Lake Bogoria National Reserve, Kenya. Austral Ecol 25:140–149. doi:10.1111/j.1442-9993.2000.tb00014.x

    Article  Google Scholar 

  • Rodriguez-Iturbe I (2000) Ecohydrology: a hydrologic perspective of climate-soil-vegetation dynamics. Water Resour Res 36:3–9. doi:10.1029/1999wr900210

    Article  Google Scholar 

  • Si JH, Feng Q, Zhang XY, Chang ZQ, Su YH, Xi HY (2007) Sap flow of Populus euphratica in a desert riparian forest in an extreme arid region during the growing season. J Integr Plant Biol 49:425–436. doi:10.1111/j.1672-9072.2006.00388.x

    Article  Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688. doi:10.1038/163688a0

    Article  Google Scholar 

  • Sun Y, Li X, He Y, Jia Y, Ma Z, Guo W, Xin Z (2011) Impact factors on distribution and characteristics of natural plant community in reclamation zones of Changjiang River estuary. Chin Geogr Sci 22:154–166. doi:10.1007/s11769-011-0475-z

    Article  Google Scholar 

  • Sun R, Yuan XZ, Chen ZL, Zhang YW, Liu H (2012) Effect of three georges reservoir (Yangzi River) on the plant species richness in drawdown zone downstream the tributary river (Pengxihe River). Russ J Ecol 43:307–314. doi:10.1134/S1067413612040121

    Article  Google Scholar 

  • ter Braak CJF and Šmilauer P (eds) (2002) CANOCO Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca NY, USA, pp 500

  • Walbridge MR (1994) Plant community composition and surface-water chemistry of fen peatlands in West-Virginias appalachian plateau. Water Air Soil Poll 77:247–269. doi:10.1007/bf00478422

    Article  Google Scholar 

  • Wang YB, Feng Q, Si JH, Su YH, Chang ZQ, Xi HY (2011) The changes of vegetation cover in Ejina Oasis based on water resources redistribution in Heihe River. Environ Earth Sci 64:1965–1973. doi:10.1007/s12665-011-1013-0

    Article  Google Scholar 

  • Wetzel PR, Kitchens WM, Brush JM, Dusek ML (2004) Use a reciprocal transplant study to measure the rate of plant community change in a tidal marsh along a salinity gradient. Wetlands 24:879–890. doi:10.1672/0277-5212(2004)024[0879:uoarts]2.0.Co;2

  • Xi HY, Feng Q, Liu W, Si JH, Chang ZQ, Su YH (2010a) The research of groundwater flow model in Ejina Basin, Northwestern China. Environ Earth Sci 60:953–963. doi:10.1007/s12665-009-0231-1

    Article  Google Scholar 

  • Xi HY, Feng Q, Si JH, Chang ZQ, Cao SK (2010b) Impacts of river recharge on groundwater level and hydrochemistry in the lower reaches of Heihe River Watershed, northwestern China. Hydrogeol J 18:791–801. doi:10.1007/s10040-009-0562-8

    Article  Google Scholar 

  • Xiaohui J, Mingli S, Zhibing H, Zhen J (2007) Influence of water regulation on the eco-environment in the lower reaches of the Heihe River. In: Proceedings of the 3rd international yellow river forum on sustainable water resources management and delta ecosystem maintenance, vol 46–54

  • Yang YH, Chen YN, Li WH (2009) Relationship between soil properties and plant diversity in a desert riparian forest in the lower reaches of the Tarim River, Xinjiang, China. Arid Land Res Manag 23:283–296. doi:10.1080/15324980903231991

    Article  Google Scholar 

  • Zenner EK, Olszewski SL, Palik BJ, Kastendick DN, Peck JE, Blinn CR (2012) Riparian vegetation response to gradients in residual basal area with harvesting treatment and distance to stream. Forest Ecol Manag 283:66–76. doi:10.1016/j.foreco.2012.07.010

    Article  Google Scholar 

  • Zhang Z, Wan C, Zheng Z, Hu L, Feng K, Chang J, Xie P (2013) Plant community characteristics and their responses to environmental factors in the water level fluctuation zone of the three gorges reservoir in China. Environ Sci Pollut Res Int 20:7080–7091. doi:10.1007/s11356-013-1702-1

    Article  Google Scholar 

  • Zhao WZ, Chang XL, He ZB (2004) Responses of distribution pattern of desert riparian forests to hydrologic process in Ejina oasis. Sci China D 47:21–31. doi:10.1360/04zd0003

    Article  Google Scholar 

  • Zhou WL, Yang XQ, Hao P, Liu QW, Cao DC, Baribault T, Li JW (2010) Plant diversity and its maintenance in Populus euphratica riparian forests in the Ejina Oasis, China. For Stud China 12:55–61. doi:10.1007/s11632-010-0011-8

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 41101026, 91025002), International Postdoctoral Exchange Fellowship Program (No. 201389), West Light Foundation of The Chinese Academy of Sciences (No. 29Y128881) and China Postdoctoral Science Foundation (No. 20110490863). We appreciate Dr. Xiaoyou Zhang, Dr. Yonghong Su, Mr. Yingsheng Guo and Mrs. Bing Jia for the assistance in field work, and anonymous reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyang Xi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, H., Feng, Q., Zhang, L. et al. Effects of water and salinity on plant species composition and community succession in Ejina Desert Oasis, northwest China. Environ Earth Sci 75, 138 (2016). https://doi.org/10.1007/s12665-015-4823-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-4823-7

Keywords

Navigation