Skip to main content
Log in

Comparison of four flocculants for removing algae in Dianchi Lake

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Cyanobacterial blooms are a significant concern in Dianchi Lake and other freshwater bodies in China. Effects of dose, duration, pH, and colony size on algae and turbidity removal in artificial water containing Microcystis aeruginosa were investigated for polymeric ferric sulfate (PFS), polymeric aluminum chloride (PAC), Al2(SO4)3·18H2O, and Fe2(SO4)3. We also investigated the performance of flocculants for removal of chlorophyll a (Chl-a) and turbidity from algae-laden water at different doses and water temperatures. In artificial water experiment (initial cell density: 1.9 × 10cells/mL; initial Chl-a: 268.00 μg/L) the most effective doses of PFS and PAC were 40 and 50 mg/L, respectively; for Al2(SO4)3·18H2O and Fe2(SO4)3, it was 50–60 mg/L. During the 24-h experiment, PFS most efficiently removed Microcystis and turbidity at the dose of 50 mg/L. PAC, Al2(SO4)3·18H2O, and Fe2(SO4)3 were most effective at pH 6–8. For PFS, the optimum pH range was 5–8. Removal rate of PFS, PAC, and Fe2(SO4)3 of large colonies was significantly better than for small colonies. In algae-laden water experiment (initial cell density: 6.47 × 10cell/mL; initial Chl-a: 11,641.12 μg/L), the most effective doses of PFS, PAC, Al2(SO4)3·18H2O, and Fe2(SO4)3 were 125, 125, 125, and 250 mg/L, respectively. For water temperatures of 20–30 °C, PFS and PAC were most effective at the dose of 125 mg/L. Considering removal effectiveness, safety, and economy, PFS is recommended for clarifying algae-laden water in Dianchi Lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aktas TS, Takeda F, Maruo C, Fujibayashi M, Nishimura O (2013) Comparison of four kinds of coagulants for the removal of picophytoplankton. Desalin Water Treat 51(16–18):3547–3557. doi:10.1080/19443994.2012.750777

    Article  Google Scholar 

  • Cao ZG, Xu J, Liu JL, Luan Y, Wang XM, Li YL (2010) A new trophic status monitoring method for freshwater lakes—the chlorophyll ratio model. Acta Sci Circumst 30(2):275–280 (in Chinese)

    Google Scholar 

  • Cheng WP (2002) Comparison of hydrolysis/coagulation behavior of polymeric and monomeric iron coagulants in humic acid solution. Chemosphere 47(9):963–969. doi:10.1016/S0045-6535(02)00052-8

    Article  Google Scholar 

  • Cornelissen G, Van Noort P, Parsons JR, Govers H (1997) Temperature dependence of slow adsorption and desorption kinetics of organic compounds in sediments. Water Sci Technol 31(2):454–460. doi:10.1021/es960300+

    Article  Google Scholar 

  • Dong CL, Wei C, Cheng L (2014) Flocculation of algal cells by amphoteric chitosan-based flocculant. Bioresour Technol 170:239–247. doi:10.1016/j.biortech.2014.07.108

    Article  Google Scholar 

  • Edwards SC, Williams TP, Bubb JM, Lester JN (1995) The success of elutriate tests in extended prediction of water-quality after a dredging operation under fresh-water and saline conditions. Environ Monit Assess 36(2):105–122. doi:10.1007/BF00546784

    Article  Google Scholar 

  • Fang T, Ao HY, Liu JT, Cai QH, Liu YD (2004) The Spatio-temporal of water environmental status in Dianchi Lake. Acta Hydrobiol Sin 28(02):124–130 (in Chinese)

    Google Scholar 

  • Gao BY, Yue QY, Wang Y (2007) Coagulation performance of polyaluminum silicate chloride (PASiC) for water and wastewater treatment. Sep Purif Technol 56(2):225–230. doi:10.1016/j.seppur.2007.02.003

    Article  Google Scholar 

  • Ghosh U, Talley JW, Luthy RG (2001) Particle-scale investigation of PAH desorption kinetics and thermodynamics from sediment. Water Sci Technol 35(17):3468–3475. doi:10.1021/es0105820

    Article  Google Scholar 

  • Han MY, Kim W (2001) A theoretical consideration of algae removal with clays. Microchem J 68(2–3):157–161. doi:10.1016/S0026-265X(00)00142-9

    Article  Google Scholar 

  • Jiang JQ, Graham N (1998) Preliminary evaluation of the performance of new pre-polymerised inorganic coagulants for lowland surface water treatment. Water Sci Technol 37(2):121–128. doi:10.1016/S0273-1223(98)00017-1

    Article  Google Scholar 

  • Jiang JQ, Graham N, Harward C (1993) Comparison of polyferricsulpate with other coagulants for the removal of algae and algae-derived organic matter. Water Sci Technol 27(11):221–230

    Google Scholar 

  • Landsberg JH (2002) The effects of harmful algal blooms on aquatic organisms. Rev Fish Sci 10(2):113–390. doi:10.1080/20026491051695

    Article  Google Scholar 

  • Liu GF, Fan CX, Zhong JC, Zhang L, Ding SM, Yan SH, Han SQ (2010) Using hexadecyltrimethyl ammonium bromide (CTAB) modified clays to clean the Microcystis aeruginosa blooms in Lake Taihu China. Harmful Algae 9(4):413–418. doi:10.1016/j.hal.2010.02.004

    Article  Google Scholar 

  • Ma C, Yu SL, Shi WX, Heijman S, Rietveld LC (2013) Effect of different temperatures on performance and membrane fouling in high concentration PAC-MBR system treating micro-polluted surface water. Bioresour Technol 141:19–24. doi:10.1016/j.biortech.2013.02.025

    Article  Google Scholar 

  • Meus P, Moureaux P, Gailliez S, Flament J, Delloye F, Nix P (2014) In situ monitoring of karst springs in Wallonia (southern Belgium). Environ Earth Sci 71(2):533–541. doi:10.1007/s12665-013-2760-x

    Article  Google Scholar 

  • Nakai S, Zou G, Okuda T, Tsai TY, Song X, Nishijima W, Okada M (2010) Anti-cyanobacterial allelopathic effects of plants used for artificial floating islands. Allelopathy J 26(1):113–121

    Google Scholar 

  • Okuda T, Nishijima W, Deevanhxay P, Okada M, Hasegawa T (2006) Improvement of sedimentation by the coagulation using poly-silicate iron for the removal of Cryptosporidium oocyst. Sep Sci Technol 41(15):3387–3396. doi:10.1080/15421400600914957

    Article  Google Scholar 

  • Pan G, Zhang MM, Chen H, Zou H, Yan H (2006) Removal of cyanobacterial blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals. Environ Pollut 141(2):195–200. doi:10.1016/j.envpol.2005.08.041

    Article  Google Scholar 

  • Petrusevski B, Vlaski A, Vanbreeman AN, Alaerts GJ (1993) Influence of algal species and cultivation conditions on algal removal in direct filtration. Water Sci Technol 27(11):211–220

    Google Scholar 

  • Roh SH, Kwak DH, Jung HJ, Hwang KJ, Baek IH, Chun YN, Kim SI, Lee JW (2008) Simultaneous removal of algae and their secondary algal metabolites from water by hybrid system of DAF and PAC adsorption. Sep Sci Technol 43(1):113–131. doi:10.1080/01496390701764494

    Article  Google Scholar 

  • Rugner H, Schwientek M, Beckingham B, Kuch B, Grathwohl P (2013) Turbidity as a proxy for total suspended solids (TSS) and particle facilitated pollutant transport in catchments. Environ Earth Sci 69(2):373–380. doi:10.1007/s12665-013-2307-1

    Article  Google Scholar 

  • Shen PP, Shi Q, Hua ZC, Kong FX, Wang ZG, Zhuang SX, Chen DC (2003) Analysis of microcystins in cyanobacteria blooms and surface water samples from Meiliang Bay, Taihu Lake China. Environ Int 29(5):641–647. doi:10.1016/S0160-4120(03)00047-3

    Article  Google Scholar 

  • Stephenson RJ, Duff S (1996) Coagulation and precipitation of a mechanical pulping effluent.1. Removal of carbon, colour and turbidity. Water Res 30(4):781–792. doi:10.1016/0043-1354(95)00213-8

    Article  Google Scholar 

  • Wallace BB, Bailey MC, Hamilton DP (2000) Simulation of vertical position of buoyancy regulating Microcystis aeruginosa in a shallow eutrophic lake. Aquat Sci 62(4):320–333. doi:10.1007/PL00001338

    Article  Google Scholar 

  • Wang SM, Dou HS (1998) Lakes in China. Science Press, Beijing

    Google Scholar 

  • Wang Z, Zhang ZY, Zhang JQ, Li YX (2012a) Large-scale utilization of water hyacinth for nutrient removal in Dianchi Lake in China: the effects on the water quality, macrozoobenthos and zooplankton. Chemosphere 89(10):1255–1261. doi:10.1016/j.chemosphere.2012.08.001

    Article  Google Scholar 

  • Wang ZC, Li DH, Qin HJ, Zhang YY, Liu HQ, Yan SH (2012b) An integrated method for removal of harmful cyanobacterial blooms in eutrophic lakes. Environ Pollut 160:34–41. doi:10.1016/j.envpol.2011.09.003

    Article  Google Scholar 

  • Wilén BM, Keiding K, Nielsen PH (2000) Anaerobic deflocculation and aerobic reflocculation of activated sludge. Water Res 34:3933–3942. doi:10.1016/S0043-1354(00)00274-8

    Article  Google Scholar 

  • Wyatt NB, Gloe LM, Brady PV, Hewson JC, Grillet AM, Hankins MG, Pohl PI (2012) Critical conditions for ferric chloride-induced flocculation of freshwater algae. Biotechnol Bioeng 109(2):493–501. doi:10.1002/bit.23319

    Article  Google Scholar 

  • Xiao LJ, Han BP, Lin QQ, Lei LM (2007) Usage of flocculation in emergent control of algal bloom in drinking water supplying reservoir. Environ Sci 28(10):2192–2197 (in Chinese)

    Google Scholar 

  • Xiao LJ, Ouyang H, Li HM, Chen MR, Lin QQ, Han BP (2010) Enclosure study on phytoplankton response to stocking of silver carp (Hypophthalmichthysmolitrix) in a eutrophic tropical reservoir in South China. Int Rev Hydrobiol 95(4–5):428–439. doi:10.1002/iroh.201011249

    Article  Google Scholar 

  • Yan MQ, Wang DS, Qu JH, Ni JR, Chow C (2008) Enhanced coagulation for high alkalinity and micro-polluted water: the third way through coagulant optimization. Water Res 42(8–9):2278–2286. doi:10.1016/j.watres.2007.12.006

    Article  Google Scholar 

  • Yang Z, Shang YB, Lu YB, Chen YC, Huang X, Chen AM, Jiang YX, Gu W, Qian XZ, Yang H, Cheng RS (2011) Flocculation properties of biodegradable amphoteric chitosan-based flocculants. Chem Eng J 172(1):287–295. doi:10.1016/j.cej.2011.05.106

    Article  Google Scholar 

  • Yang Z, Yuan B, Huang X, Zhou JY, Cai J, Yang H, Li AM, Cheng RS (2012) Evaluation of the flocculation performance of carboxymethyl chitosan-graft-polyacrylamide, a novel amphoteric chemically bonded composite flocculant. Water Res 46(1):107–114. doi:10.1016/j.watres.2011.10.024

    Article  Google Scholar 

  • Yuan CY, Lee YJ, Hsu G (2012) Aluminum overload increases oxidative stress in four functional brain areas of neonatal rats. J Biomed Sci. doi:10.1186/1423-0127-19-51

    Google Scholar 

  • Zhang Y, Ma F, Li GB (2013) Fouling of ultrafiltration membrane by algal-rich water: effect of kalium, calcium, and aluminum. J Colloid Interf Sci 405:22–27. doi:10.1016/j.jcis.2013.05.056

    Article  Google Scholar 

  • Zhou CL, Song LR (2009) Phytoplankton community in a large shallow eutrophic lake (Dianchi Lake, Southwest China). 3rd International Conference of Bioinformatics and Biomedical Engineering (1–11):5536–5539

  • Zou H, Pan G, Chen H, Yuan XZ (2006) Removal of cyanobacterial blooms in Taihu Lake using local soils. II. Effective removal of Microcystis aeruginosa using local soils and sediments modified by chitosan. Environ Pollut 141(2):201–205. doi:10.1016/j.envpol.2005.08.042

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by funding from the National Science and Technology Major Project for Water Pollution Control and Treatment (2012ZX07102-004). We also thank the anonymous reviewers  for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoubing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Wang, Y., Feng, S. et al. Comparison of four flocculants for removing algae in Dianchi Lake. Environ Earth Sci 74, 3795–3804 (2015). https://doi.org/10.1007/s12665-015-4093-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4093-4

Keywords

Navigation