Skip to main content
Log in

Selection of optimal flocculant for effective harvesting of the fucoxanthin-rich marine microalga Isochrysis galbana

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Flocculation harvesting of the fucoxanthin-rich marine microalga Isochrysis galbana has received little attention. Therefore, we attempted to screen for an optimal chemical flocculant and optimize flocculation conditions from five chemical flocculants—ferric chloride (FC), aluminum sulfate (AS), polyaluminum chloride (PAC), aluminum potassium sulfate (APS), and zinc sulfate (ZS)—for effective flocculation of I. galbana. The growth rate, photosynthetic performance, and fucoxanthin content were determined in re-suspended flocculated algal cells and in the flocculation supernatant cultured algal cells. The results showed that high growth rate and fucoxanthin accumulation were observed when FC was used as the flocculant in I. galbana cultures, which indicated that FC may cause less harm to I. galbana than the other aluminum-based flocculants. Furthermore, satisfactory flocculation efficiency was also observed when FC was used to flocculate I. galbana, and the FC dosage was less than that required for flocculation of I. galbana using PAC, APS, and AS. Thus, we selected FC as the optimal flocculant for harvesting I. galbana based on its flocculation efficiency together with algal physiological performance, growth rate, and fucoxanthin content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afolayan AF, Bolton JJ, Lategan CA, Smith PJ, Beukes DR (2008) Fucoxanthin, tetraprenylated toluquinone and toluhydroquinone metabolites from Sargassum heterophyllum inhibit the in vitro growth of the Malaria parasite and Plasmodium falciparum. Z Naturforsch C 63:848–852

    Article  CAS  PubMed  Google Scholar 

  • Danquah MK, Ang L, Uduman N, Moheimani N, Fordea GM (2009) Dewatering of microalgal culture for biodiesel production: exploring polymer flocculation and tangential flow filtration. J Chem Technol Biotechnol 84:1078–1083

  • Das SK, Hashimoto T, Kanazawa K (2008) Growth inhibition of human hepatic carcinoma HepG2 cells by fucoxanthin is associated with down-regulation of cyclin D. Biochim Biophys Acta Gen Subj 1780:743–749

  • Eldridge RJ, Hill DRA, Gladman BR (2012) A comparative study of the coagulation behaviour of marine microalgae. J Appl Phycol 24:1667–1679

    Article  CAS  Google Scholar 

  • Gómez-Loredo A, Benavides J, Rito-Palomares M (2015) Growth kinetics and fucoxanthin production of Phaeodactylum tricornutum and Isochrysis galbana cultures at different light and agitation conditions. J Appl Phycol. doi:10.1007/s10811-015-0635-0:1-12

    Google Scholar 

  • Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum Press, New York, pp 29–60

    Chapter  Google Scholar 

  • Kawahara M (2005) Effects of aluminum on the nervous system and its possible link with neurodegenerative diseases. J Alzheimers Dis 8:171–182

    CAS  PubMed  Google Scholar 

  • Kim K-N, Heo S-J, Yoon W-J, Kang S-M, Ahn G, Yi T-H, Jeon Y-J (2010) Fucoxanthin inhibits the inflammatory response by suppressing the activation of NF-kappa B and MAPKs in lipopolysaccharide-induced RAW 264 7 macrophages. Eur J Pharmacol 649:369–375

    Article  CAS  PubMed  Google Scholar 

  • Lin AP, Wang GC, Shen SD, Yang F, Pan GH (2010) Two specific causes of cell mortality in freeze-thaw cycle of young thalli of Porphyra yezoensis (Bangiales, Rhodophyta). J Phycol 46:773–779

    Article  Google Scholar 

  • Liu ZY, Wang GC, Zhou BC (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722

    Article  CAS  PubMed  Google Scholar 

  • Maeda H, Hosokawa M, Sashima T, Miyashita K (2007) Dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue and decreases blood glucose in obese/diabetic KK-A(y) mice. J Agric Food Chem 55:7701–7706

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Hosokawa M, Matsukawa N, Hagio M, Shinoki A, Nishimukai M, Miyashita K, Yajima T, Hara H (2010) Suppressive effects of the marine carotenoids, fucoxanthin and fucoxanthinol on triglyceride absorption in lymph duct-cannulated rats. Eur J Nutr 49:243–249

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa S, Hosokawa M, Miyashita K (2012) Fucoxanthin promotes translocation and induction of glucose transporter 4 in skeletal muscles of diabetic/obese KK-A(y) mice. Phytomedicine 19:389–394

    Article  CAS  PubMed  Google Scholar 

  • Papazi A, Makridis P, Divanach P (2010) Harvesting Chlorella minutissima using cell coagulants. J Appl Phycol 22:349–355

    Article  CAS  Google Scholar 

  • Peng J, Yuan JP, Wu CF, Wang JH (2011) Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Mar Drugs 9:1806–1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rakesh S, Saxena S, Dhar DW, Prasanna R, Saxena AK (2014) Comparative evaluation of inorganic and organic amendments for their flocculation efficiency of selected microalgae. J Appl Phycol 26:399–406

    Article  CAS  Google Scholar 

  • Salim S, Bosma R, Vermue MH, Wijffels RH (2011) Harvesting of microalgae by bio-flocculation. J Appl Phycol 23:849–855

    Article  PubMed  PubMed Central  Google Scholar 

  • Sangeetha RK, Bhaskar N, Baskaran V (2009) Comparative effects of beta-carotene and fucoxanthin on retinol deficiency induced oxidative stress in rats. Mol Cell Biochem 331:59–67

    Article  CAS  PubMed  Google Scholar 

  • Shimoda H, Tanaka J, Shan S-J, Maoka T (2010) Anti-pigmentary activity of fucoxanthin and its influence on skin mRNA expression of melanogenic molecules. J Pharm Pharmacol 62:1137–1145

    Article  CAS  PubMed  Google Scholar 

  • Sirin S, Trobajo R, Ibanez C, Salvado J (2012) Harvesting the microalgae Phaeodactylum tricornutum with polyaluminum chloride, aluminium sulphate, chitosan and alkalinity-induced flocculation. J Appl Phycol 24:1067–1080

    Article  CAS  Google Scholar 

  • Spilling K, Seppala J, Tamminen T (2011) Inducing autoflocculation in the diatom Phaeodactylum tricornutum through CO2 regulation. J Appl Phycol 23:959–966

    Article  CAS  Google Scholar 

  • Sugawara T, Matsubara K, Akagi R, Mori M, Hirata T (2006) Antiangiogenic activity of brown algae fucoxanthin and its deacetylated product, fucoxanthinol. J Agric Food Chem 54:9805–9810

    Article  CAS  PubMed  Google Scholar 

  • Tan C-P, Hou Y-H (2014) First evidence for the anti-inflammatory activity of fucoxanthin in high-fat-diet-induced obesity in mice and the antioxidant functions in PC12 cells. Inflammation 37:443–450

    Article  CAS  PubMed  Google Scholar 

  • Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energ 2 doi:10.1063/1.3294480

  • Vandamme D, Foubert I, Fraeye I, Meesschaert B, Muylaert K (2012) Flocculation of Chlorella vulgaris induced by high pH: role of magnesium and calcium and practical implications. Bioresour Technol 105:114–119

    Article  CAS  PubMed  Google Scholar 

  • Vandamme D, Foubert I, Muylaert K (2013) Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol 31:233–239

    Article  CAS  PubMed  Google Scholar 

  • Vergini S, Aravantinou AF, Manariotis ID (2015) Harvesting of freshwater and marine microalgae by common flocculants and magnetic microparticles. J Appl Phycol. doi:10.1007/s10811-015-0662-x:1-9

    Google Scholar 

  • Vilchez C, Forjan E, Cuaresma M, Bedmar F, Garbayo I, Vega JM (2011) Marine carotenoids: biological functions and commercial applications. Mar Drugs 9:319–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WJ, Wang GC, Zhang M, Tseng CK (2005) Isolation of fucoxanthin from the rhizoid of Laminaria japonica Aresch. J Integr Plant Biol 47:1009–1015

    Article  CAS  Google Scholar 

  • Woo M-N, Jeon S-M, Kim H-J, Lee M-K, Shin S-K, Shin YC, Park Y-B, Choi M-S (2010) Fucoxanthin supplementation improves plasma and hepatic lipid metabolism and blood glucose concentration in high-fat fed C57BL/6N mice. Chem Biol Interact 186:316–322

    Article  CAS  PubMed  Google Scholar 

  • Wyatt NB, Gloe LM, Brady PV, Hewson JC, Grillet AM, Hankins MG, Pohl PI (2012) Critical conditions for ferric chloride-induced flocculation of freshwater algae. Biotechnol Bioeng 109:493–501

    Article  CAS  PubMed  Google Scholar 

  • Xiao X, Si X, Yuan Z, Xu X, Li G (2012) Isolation of fucoxanthin from edible brown algae by microwave-assisted extraction coupled with high-speed countercurrent chromatography. J Sep Sci 35:2313–2317

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Guo C, Wang F, Zheng S, Liu C-Z (2011) A simple and rapid harvesting method for microalgae by in situ magnetic separation. Bioresour Technol 102:10047–10051

    Article  CAS  PubMed  Google Scholar 

  • Zhao PP, Zang ZR, Xie XJ, Huang AY, Wang GC (2014) The influence of different flocculants on the physiological activity and fucoxanthin production of Phaeodactylum tricornutum. Process Biochem 49:681–687

    Article  CAS  Google Scholar 

  • Zittelli GC, Rodolfi L, Biondi N, Tredici MR (2006) Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture 261:932–943

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Science and Technology Strategic Pilot of the Chinese Academy of Sciences (XDA05030401) and Tianjin Natural Science foundation (12JCZDJC22200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueping Liu or Guangce Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Xie, X., Huan, L. et al. Selection of optimal flocculant for effective harvesting of the fucoxanthin-rich marine microalga Isochrysis galbana . J Appl Phycol 28, 1579–1588 (2016). https://doi.org/10.1007/s10811-015-0716-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0716-0

Keywords

Navigation