Skip to main content
Log in

Evaluation of the risk to groundwater after treating logs with cypermethrin

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In order to protect conifer logs against attacks from the striped ambrosia beetle (Trypodendron lineatum) during spring in Swiss forests, logs are treated with the insecticide cypermethrin. Rainfall can cause the insecticide to leach into the ground, potentially threatening the groundwater quality. Forest groundwater is widely used for drinking water, which means that any contaminants within it should be avoided. This study assesses the risk of groundwater contamination in field conditions. The two study areas are located on unconsolidated sediments (Censières, or CS) and on karstic rocks (Grand Bochat, or GB). An analytical method was developed to determine the concentration of cypermethrin and its degradation products 3-PBA and DCVA in water samples. Intensive rainfall was simulated in order to mimic a situation that threatens groundwater. The study’s results show that, when treated according to the manufacturer’s instructions, a certain amount of insecticide was leached during the first rainfall event (2.2 g or 4.4 % of the applied cypermethrin). This leaching threatens groundwater quality, but can be avoided by decreasing the pesticide amount applied while maintaining a satisfactory protection. The insecticide amount that reached the groundwater was very low and was related to simulated rainfall, not natural rainfall. In Censières, only one groundwater sample presented a cypermethrin concentration (4 μg/l). In Grand Bochat, after a simulated rainfall of 36 mm, 3.3 % of the insecticide (5 g) was leached and 0.05 % of the total applied insecticide amount (corresponding to 1.5 % of the leached insecticide) reached the groundwater under the epikarst layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adam O (2011) Bioindication de la qualité de l’eau pas les gammares: Concepts et applications. Presses universitaires de Franche-Comté, Université de Franche-Comté

  • Angerer J, Ritter A (1997) Determination of pyrethroid metabolites in human urine using solid-phase extraction and gas chromatography-mass-spectrometry. J Chromatogr 695:217–226

    Article  Google Scholar 

  • Baize D, Girard MC (2009) Référentiel pédologique 2008. Editions Quæ, Versailles

    Google Scholar 

  • Calvet R (2005) Les pesticides dans les sols, Conséquences agronomiques et environnementales. France Agricole Editions, Paris

    Google Scholar 

  • Friberg-Jensen U, Wendt-Rasch L, Woin P, Christoffersen K (2003) Effects of the pyrethroid insecticide, cypermethrin, on a freshwater community studied under field conditions. I. Direct and indirect effects on abundance measures of organisms at different trophic levels. Aquat Toxicol 63:357–371

    Article  Google Scholar 

  • Geibe CE, Danielsson R, van Hees PAW, Lundström Ulla S (2006) Comparison of soil solution chemistry sampled by centrifugation, two types of suction lysimeters and zero-tension lysimeters. Appl Geochem 21:2096–2111

    Article  Google Scholar 

  • German Federal Environment Agency (2005) Internal pyrethroid exposure among the general population in Germany and reference values for pyrethroid metabolites in urine. Bundesgesundheitsbl–Gesundheitsforsch–Gesundheitsschutz 48:1187–1193

    Google Scholar 

  • Gobat JM, Aragno M, Matthey W (2003) Le sol vivant, Base de pédologie–Biologie des sols. Presse polytechnique et universitaire romande, Lausanne

    Google Scholar 

  • Heudorf U, Angerer J (2001) Metabolites of pyrethroid insecticides in urine specimens: current exposure in an urban population in Germany. Environ Health Perspect 109:213–217

    Article  Google Scholar 

  • Hladik ML, Smalling KL, Kuivila KM (2009) Methods of analysis–Determination of pyrethroid insecticides in water and sediment using gas chromatography/mass spectrometry, U.S. Geological Survey Techniques and Methods 5–C2

  • IUSS Working Group WRB (2006) World reference base for soil resources 2006. World Soil Resources Reports No.103. FAO, Rome

  • Landon MK, Delin GN, Komor SC, Regan CP (1999) Comparison of the stable-isotopic composition of soil water collected from suction lysimeters, wick samplers and cores in a sandy unsaturated zone. J Hydrol 224:45–54

    Article  Google Scholar 

  • Lee S, Gan J, Kavashima J (2002) Recovery of synthetic pyrethroids in water samples during storage and extraction. J Agric Food Chem 50:7194–7198

    Article  Google Scholar 

  • Leng G, Kühn KH, Idel H (1998) Biological monitoring of pyrethroids in blood and pyrethroid metabolites in urine: applications and limitations. Sci Total Environ 199:173–181

    Article  Google Scholar 

  • Leng G, Ranft U, Sugiri K, Hadnagy W, Berger-Preiss E, Idel H (2003) Pyrethroids used indoors–biological monitoring of exposure to pyrethroids following an indoor pest control operation. Int J Hyg Environ Health 2006(2):85–92

    Article  Google Scholar 

  • Liu W, Gan JJ, Qin S (2005) Separation and aquatic toxicity of enantiomers of synthetic pyrethroid insecticides. Chirality 17:127–133

    Article  Google Scholar 

  • Liu TF, Sun C, Ta N, Hong J, Yang SG, Chen CX (2007) Effect of copper on the degradation of pesticides cypermethrin and cyhalothrin. J Environ Sci 19:1235–1238

    Article  Google Scholar 

  • Madec G (1999) Etude des écoulements dans l’épikarst. Approche géophysique, hydraulique et hydrochimique sur le site de Grand-Bochat. MSc thesis, Centre of Hydrogeology, Neuchâtel

  • Neary DG, Ice GG, Jackson CR (2009) Linkages between forest soils and water quality and quantity. For Ecol Manage 258:2269–2281

    Article  Google Scholar 

  • Oudou HC, Hansen HC (2002) Sorption of lambda-cyhalothrin, cypermethrin, deltamethrin and fenvalerate to quartz, corundum, kaolinite and montmorillonite. Chemosphere 49:1285–1294

    Article  Google Scholar 

  • Perrin J (2003) A conceptual model of flow and transport in a karst aquifer based on spatial and temporal variations of natural tracers. Thesis, University of Neuchâtel, Switzerland

  • Pronk M, Goldscheider N, Zopfi J, Zwahlen F (2008) Percolation and particle transport in the unsaturated zone of a karst aquifer. Ground Water 47:361–369

    Article  Google Scholar 

  • Raeppel C, Nief M, Fabritius M, Racault L, Appenzeller BM, Millet M (2011) Simultaneous analysis of pesticides from different chemical classes by using a derivatisation step and gas chromatography-mass spectrometry. J Chromatogr A 1218:8123–8129

    Article  Google Scholar 

  • Savoy L (2007) Use of natural and artificial reactive tracers to investigate the transfer of solutes in karst systems. Thesis, University of Neuchâtel, Switzerland

  • Vijverberg HPM, van den Bercken J (1990) Neurotoxicological effects and the mode of action of pyrethroid insecticides. Crit Rev Toxicol 21:105–126

    Article  Google Scholar 

  • World Health Organization, IPCS (1989) Environmental Health Criteria 82. WHO, Geneva

    Google Scholar 

  • Xie WJ, Zhou JM, Wang HY, Chen XQ (2008) Effect of nitrogen on the degradation of cypermethrin and its metabolite 3-phenoxybenzoic acid in soil. Pedosphere 18:638–644

    Article  Google Scholar 

  • Zanella A et al (2011) European Humus Forms Reference Base, hal-00541496, version 2

  • Zhou JL, Rowland SJ (1995) Influence of the nature of particulate organic matter on the sorption of cypermethrin: implications on KOC correlations. Environ Int 21:187–195

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the “Service des parcs et domains” of the city of Lausanne and the “Service des forêts” of the city of Neuchâtel, which permitted and actively supported the realisation of the experiments on the studied areas Censières and Grand Bochat, and also lent materials and made employees available to assist. Thanks are also due to the Soil & Vegetation Laboratory of the University of Neuchâtel for the soil analysis. This research was funded by the Alpeau project, which is a part of the France-Switzerland Interreg programme of territorial cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri Dousse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dousse, D., de Alencastro, L.F., Grandjean, D. et al. Evaluation of the risk to groundwater after treating logs with cypermethrin. Environ Earth Sci 73, 3275–3284 (2015). https://doi.org/10.1007/s12665-014-3611-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3611-0

Keywords

Navigation