Skip to main content
Log in

Influence of wall-rock alteration and fluid mixing mechanisms in the chemistry of thermal fluids and mud-pool sediments at Caldeiras da Ribeira Grande (S. Miguel Island, Azores)

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The Caldeiras da Ribeira Grande site is placed at the north-eastern side of the Ribeira Grande geothermal system (S. Miguel Island) and includes a fumarolic field with multiple discharge points, closely associated with a mud pool. The major discharge is artificially confined to a tank, also fed by a cold (≈19 °C) spring water, allowing the accumulation of diluted thermal fluid and mud. In the open fumarole site placed to the NE of the tank another persistent thermal fluid discharge can be observed, whose temperature (70 °C), pH (≈2–3) and electrical conductivity (185.4–3,300 μS/cm) values, as well as major element contents, are within ranges bracketed by measurements performed at the same site over time. Despite of differences imposed by inhomogeneous dilution processes within tank, the compositional fingerprints of both thermal fluids are similar, pointing to a common origin. Variations in Br, Mo, W, Nb, Sn and Sb contents are minimal, but the thermal fluid discharging at the open fumarole site reveals concentrations above 100 μg/l in Zn, Ti, Mn, Rb, Y, Ce and Nd and up to 11 μg/l in As, Hg and Pb. The chondrite-normalised REE patterns are equivalent to those usually reported for acid, SO4 2−-bearing geothermal fluids and the available data show that the fluid chemistry strongly depends on the alteration experienced by the hosting volcanic rocks. This alteration led to relative [Hg, S, Ag, Cu, ±Ge] enrichments, but a significant part of the [K, Na, Ca, Mn, Mg, Zn, Co, ±W ± REE] original rock contents was carried out by the modified fluid. Kaolinite and alunite(-jarosite), besides fine-grained relics of K-feldspar and quartz, are the fundamental components of the mud forming the boiling pool or the mounts accumulated in tank. This mineralogical similarity is consistent with bulk chemical compositions and differences in concentration rarely exceed 1.5–2 times for the large majority of the elements analysed. Some compositional features displayed by thermal fluids and coexisting muds are sensitive to pH and Eh variations, reflecting also changes in fluid/rock reaction paths due to variations in acid steam production/composition and relative proportion of steam subjected to condensation. These chemical features can be used as proxies to monitor the Ribeira Grande geothermal system, provided that adequate time series data exist for pertinent parameters in representative sampling sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agostinho J (1960) Actividade vulcânica nos Açores. Açoreana 5:362–478

    Google Scholar 

  • Arnórsson S (1991) Geochemistry and geothermal resources in Iceland. Science Inst. University of Iceland, Reykjavik

    Google Scholar 

  • Assunção CFT (1961) Estudo petrográfico da ilha de S. Miguel. Com Serv Geol Portugal XLV:81–177

    Google Scholar 

  • Assunção CFT, Canilho MH (1970) Notas sobre petrografia comparada das ilhas Atlânticas (Arquipélagos dos Açores e de Cabo Verde). Bol Museu Lab Minerlog Geolog da Fac Ciências 11(2):305–342

    Google Scholar 

  • Booth B, Croasdale R, Walker GPL (1978) A quantitative study of five thousand years of volcanism on São Miguel. Azores Phil Trans R Soc Lond 228:271–319

    Article  Google Scholar 

  • Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114

    Chapter  Google Scholar 

  • Carvalho MR (1999) Hidrogeologia do Maciço Vulcânico de Água de Pau/Fogo (S. Miguel—Açores). PhD Thesis, Univ. Lisboa

  • Carvalho MR, Mateus A (2009) Caracterização do recurso geotérmico existente no pólo de Caldeiras da Ribeira Grande (S. Miguel, Açores). Relatório INOVA

  • Carvalho MR, Forjaz VH, Almeida C (2006) Chemical Composition of Deep Hydrothermal Fluids in the Ribeira Grande Geothermal Field (Sao Miguel, Azores). Special Issue “Volcanic Geology of the Azores Islands”. J Volcanol Geotherm Res 56:116–134

    Article  Google Scholar 

  • Carvalho MR, Mateus A, Nunes JC, Carvalho JM (2011) Chemistry of the Ferraria thermal water, S. Miguel Island, Azores: mixing and precipitation processes. Environ Earth Sci 64:539–547

    Article  Google Scholar 

  • Carvalho MR, Mateus A, Nunes JC, Carvalho JM (2014) Origin and chemical nature of the thermal fluids at Caldeiras da Ribeira Grande (Fogo Volcano, S. Miguel Island, Azores). Environ Earth Sci (this issue). doi:10.1007/s12665-014-3585-y

  • Castro EVPC (1888) Recherches micrographiques sur quelques roches de l’Ile de San Miguel, (Açores). Imprimerie Nationale: 7–91

  • Cruz JV, França Z (2006) Hydrogeochemistry of thermal and mineral water springs of the Azores archipelago (Portugal). J Volcanol Geotherm Res 151:382–398

    Article  Google Scholar 

  • Cruz JV, Coutinho R, Carvalho MR, Óskarsson N, Gíslason S (1999) Chemistry of waters from the Furnas Volcano, São Miguel, Azores: fluxes of volcanic carbondioxide and leached material. J Volcanol Geotherm Res 92:151–167

    Article  Google Scholar 

  • Davies GR, Norry MJ, Gerlach DC, Cliff A (1989) A combined chemical and Pb–Sr–Nd isotope study of the Azores and Cape Verde hot-spots: the geodynamic implications. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins 42. Geological Society Special Publication, London, pp 231–255

    Google Scholar 

  • Elliott T, Blichert-Toft J, Heumann A, Koetsier G, Forjaz V (2007) The origin of enriched mantle beneath São Miguel, Azores. Geochim Cosmochim Acta 71:219–240

    Article  Google Scholar 

  • Fernandes JGC (1985) A caldeira do Fogo (São Miguel). Génese e evolução das formas de relevo. PhD Thesis, Univ. Açores

  • Ferreira T (1994) Contribuição para o estudo das emanações gasosas associadas a processos de vulcanismo no arquipélago dos Açores. PAPCC Assessment, Univ., Açores

  • Ferreira T (2000) Caracterização da actividade vulcânica da ilha de S. Miguel (Açores):Vulcanismo basáltico recente e zonas de desgaseificação. Avaliação de riscos. PhD Thesis, Univ. Açores

  • Ferreira T, Gaspar JL, Viveiros F, Marcos M, Faria F, Sousa F (2005) Monitoring of fumarole discharge and CO2 soil degassing in the Azores: contribution to volcanic surveillance and public health risk assessment. Ann Geophys 48:787–796

    Google Scholar 

  • Forjaz VH (1986) Ilha de S. Miguel (Açores)—Carta tectónica na escala 1:50.000. Doc. Int. CV/INIC, 09/86

  • Forjaz VH (1994) Geologia económica e aplicada da ilha de S. Miguel (Açores): recursos vulcanogeotérmicos. PhD Thesis, Univ. Açores

  • França Z, Cruz JV, Nunes JC, Forjaz VH (2003) Geologia dos Açores: uma perspectiva actual. Açoreana 10(1):11–140

    Google Scholar 

  • Freire P (2006) Águas minerais da Ilha de S. Miguel (Açores): caracterização hidrogeológica e implicações para a monitorização vulcanológica. MSc Thesis, Univ. Açores

  • Fructuoso G (1926) Saudades da Terra. Vol. IV. Reimpresso de 1563. Diário dos Açores, Ponta Delgada

  • Georgen JE, Sankar RD (2010) Effects of ridge geometry on mantle dynamics in an oceanic triple junction region: implications for the Azores Plateau. Earth Planet Sci Lett 298:23–34

    Article  Google Scholar 

  • Girod M, Lefévre C (1972) A propos des “andesites” des Açores. Contrib Mineral Petrol 15:159–167

    Article  Google Scholar 

  • Grant JA (1986) The isocon diagram—a simple solution to Greisen’s equation for metasomatic alteration. Econ Geol 81:1976–1982

    Article  Google Scholar 

  • Hawkesworth C, Norry M, Roddick J, Vollmer R (1979) 143Nd/144Nd and 87Sr/86Sr ratios from the Azores and their significance in LIL-element enriched mantle. Nature 280:28–31

    Article  Google Scholar 

  • Jean-Baptiste P, Allard P, Coutinho R, Ferreira T, Fourré E, Queiroz G, Gaspar JL (2009) Helium isotopes in hydrothermal volcanic fluids of the Azores archipelago. Earth Planet Sci Lett 281(1–2):70–80

    Article  Google Scholar 

  • Lourenço N, Miranda JM, Luis JF, Ribeiro A, Mendes Victor LA, Madeira J, Needham HD (1998) Morpho-tectonic analysis of the Azores volcanic plateau from a new bathymetric compilation of the area. Marine Geophy Res 20:141–156

    Article  Google Scholar 

  • Machado F (1955) Alguns Aspectos da Sismicidade dos Açores. Mem Ordem Eng 107:1–6

    Google Scholar 

  • Moore R (1990) Volcanic geology and eruption frequency, S. Miguel, Azores. Bull Volcanol 52:602–614

    Article  Google Scholar 

  • Moore R (1991) Geologic map of São Miguel, Azores (Scale 1:50.000). USGS MISC INV, map I-2007

  • Moreira M, Doucelance R, Kurz MD, Dupré B, Allègre CJ (1999) Helium and lead isotope geochemistry of the Azores Archipelago. Earth Planet Sci Lett 169:189–205

    Article  Google Scholar 

  • Muecke GK, Ade-Hall JM, Aumento F, McDonald A, Reynolds PH, Hyndman RD, Quintino J, Opdyke N, Lowrie W (1974) Deep drilling in an active geothermal area in the Azores. Nature 252:281–285

    Article  Google Scholar 

  • Nunes JC (1991) Microssismos e Neotectónica. Contribuição para o seu estudo nos Açores. PAPCC Assessment, Univ. Açores

  • Nunes JC (2004) Geologia. In: Forjaz VH (ed) Atlas Básico dos Açores. Observatório Vulcanológico e Geotérmico dos Açores. Ponta Delgada, pp 60–62

  • Oliveira CS, Costa AC, Forjaz VH, Nunes JC (1990) Seismic hazard analysis in zones of time and space interdependence: an application to São Miguel Island, Azores. Nat Hazards 3:15–29

    Article  Google Scholar 

  • Ponte CB (2010) Geothermal energy situation at the Azores islands: a successful case study. GEOFAR—an European solution for geothermal energy projects in Portugal. Workshop organiezed by IENE. Institute of Energy for Southeast Europe and ARENA–Regional Agency for Energy and Environment of Azores, 5th Nov., Lisbon. Oral presentation

  • Reyes AG, Vickridge IC (1996) Distribution of lithium, boron and chlorine between fresh and altered rocks in the Kawerau geothermal system, New Zealand. 18th Geothermal Workshop, Auckland, New Zealand, Proceedings, vol. 18, pp 121–126

  • Terroso DGF (2005) Argilas/lamas e águas termais das Furnas (Açores) avaliação das propriedades físicas e químicas relevantes para utilização em peloterapia. MSc. Thesis, Univ. Aveiro

  • Wallenstein N (1999) Estudo da história recente e do comportamento eruptivo do Vulcão do Fogo (S. Miguel, Açores), Avaliação preliminar do Hazard. PhD Thesis, Univ. Acores

  • Weston FS (1964) List of recorded volcanic eruptions in the Azores with brief reports. Bol Mus Lab Miner Geol Fac Ciências Lisboa 10(1):3–18

    Google Scholar 

  • White WM, Tapia MDM, Schilling JG (1979) The petrology and geochemistry of the Azores Islands. Contrib Miner Petrol 69:201–213

    Article  Google Scholar 

  • Wood SA (2003) The geochemistry of rare elements and yttrium in geothermal waters. In: Simmons SF, Graham I (eds) Volcanic, Geothermal, and ore-forming fluids: rulers and witnesses of processes within the Earth, vol 10. Soc. Econ. Geology Special Pub, London, pp 133–158

    Google Scholar 

  • Wood SA (2006) Rare element systematics of acidic geothermal waters from the Taupo Volcanic Zone, New Zealand. J Geochem Explor 89:424–427

    Article  Google Scholar 

  • Zbyszewski G, Almeida FM, Ferreira OV, Assunção CT (1958) Carta Geológica de Portugal na escala 1:50.000. Notícia explicativa da folha B, S. Miguel (Açores). Serv. Geol. Port., Lisboa

  • Zbyszewski G, Ferreira OV, Assunção CT (1959) Carta Geológica de Portugal na escala 1:50.000. Notícia explicativa da folha A, S. Miguel (Açores). Serv. Geol. Port., Lisboa

Download references

Acknowledgments

This work was funded by INOVA Institute through a contract with Faculdade de Ciências, Universidade de Lisboa, at the aim of the Project “Valorização de Águas Termais dos Açores”, supported by the EU-PRODESA Programme and the Azores Government (Secretaria Regional da Economia). Two anonymous Reviewers are acknowledged for improving the manuscript through insightful comments and pertinent suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Carvalho.

Appendix

Appendix

The fluid–rock interaction recorded at CRG site alters the parent rock (trachyte), produces different fine-grained mineral phases able to accumulate as mud sediment at the place of thermal fluid discharge, and influences the fluid composition. Having the chemical composition of fresh (RF) and altered (RA) rock, as well as of the mud sediment (SD) and the thermal fluid modified during trachyte alteration (FM), the original fluid composition (FO) involved in the hydrothermal process can be roughly assessed by means of the following mass balance:

$$M_{\text{RF}} C_{\text{RF}}^{i} + M_{\text{FO}} C_{\text{FO}}^{i} \approx M_{\text{RA}} C_{\text{RA}}^{i} + M_{\text{SD}} C_{\text{SD}}^{i} + M_{\text{FM}} C_{\text{FM}}^{i}$$
(1)

where M refers to the mass of each equation member and C i to the concentration of element i measured in it. Taking into account the long-lasting thermal fluid discharge at CRG and the extent of the hydrothermal alteration, one may assume that fluid mass variations are negligible; consequently:

$$M_{\text{FO}} \approx M_{\text{FM}}$$
(2)

In these circumstances,

$$M_{\text{RF}} \approx M_{\text{RA}} + M_{\text{SD}}$$
(3)

or

$$M_{\text{SD}} \approx M_{\text{RF}} - M_{\text{RA}}$$
(4)

This means that M SD depends mostly on the hydrothermal alteration experienced by trachyte rocks interacting with FO, and that other possible mass contributions to M SD (from decanting of fine solid particles in suspension or destabilisation of colloidal suspensions or particular ionic complexes) are minor. In consequence, replacing (4) in (1) and rearranging the resulting equation:

$$M_{\text{FO}} C_{\text{FO}}^{i} \approx M_{\text{RA}} \left( {C_{\text{RA}}^{i} - C_{\text{SD}}^{i} } \right) + M_{\text{RF}} \left( {C_{\text{SD}}^{i} - C_{\text{RF}}^{i} } \right) + M_{\text{FO}} C_{\text{FM}}^{i}$$
(5)

or

$$C_{\text{FO}}^{i} \approx \frac{{M_{\text{RA}} }}{{M_{\text{FO}} }}\left( {C_{\text{RA}}^{i} - C_{\text{SD}}^{i} } \right) + \frac{{M_{\text{RF}} }}{{M_{\text{FO}} }}\left( {C_{\text{SD}}^{i} - C_{\text{RF}}^{i} } \right) + C_{\text{FM}}^{i}$$
(6)

Considering now the transformation RF ⇒ RA, one may establish the relationship between M RF and M RA, as reported in Grant (1986):

$$M_{\text{RA}} = \frac{{M_{\text{RF}} }}{{C_{\text{RA}}^{i} }}\left( {C_{\text{RF}}^{i} + \varDelta C_{{{\text{RF}} - {\text{RA}}}}^{i} } \right)$$
(7)

Thus, by replacing (7) in (6), the final equation results:

$$C_{\text{FO}}^{i} \approx \frac{{M_{\text{RF}} }}{{M_{\text{FO}} }}\left[ {\frac{{\left( {C_{\text{RF}}^{i} + \Delta C_{{{\text{RF}}\_{\text{RA}}}}^{i} } \right)}}{{C_{\text{RA}}^{i} }} \times \left( {C_{\text{RA}}^{i} - C_{\text{SD}}^{i} } \right) + \left( {C_{\text{RA}}^{i} - C_{\text{RF}}^{i} } \right)} \right] + C_{\text{FM}}^{i}$$
(8)

allowing the estimation of C iFO in function of M RF/M FO. The latter ratio corresponds to the mass proportion between the fresh rock and the original fluid involved in the hydrothermal alteration process, therefore, providing an approach to evaluate the relative amount of FO needed to accomplished the transformation fresh rock + original fluid ⇒ altered rock + mud + modified fluid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mateus, A., Carvalho, M.R., Nunes, J.C. et al. Influence of wall-rock alteration and fluid mixing mechanisms in the chemistry of thermal fluids and mud-pool sediments at Caldeiras da Ribeira Grande (S. Miguel Island, Azores). Environ Earth Sci 73, 2809–2831 (2015). https://doi.org/10.1007/s12665-014-3439-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3439-7

Keywords

Navigation