Skip to main content

Advertisement

Log in

Groundwater recharge and evolution of water quality in China’s Jilantai Basin based on hydrogeochemical and isotopic evidence

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

We investigated major ions, stable isotopes, and radiocarbon dates in a Quaternary aquifer in semi-arid northwestern China to gain insights into groundwater recharge and evolution. Most deep and shallow groundwater in the Helan Mountains was fresh, with total dissolved solids <1,000 mg L−1 and Cl <250 mg L−1. The relationships of major ions with Cl suggest strong dissolution of evaporites. However, dissolution of carbonates, albite weathering, and ion exchange are also the major groundwater process in Jilantai basin. The shallow desert groundwater is enriched in δ18O and intercepts the local meteoric water line at δ18O = −13.4 ‰, indicating that direct infiltration is a minor recharge source. The isotope compositions in intermediate confined aquifers resemble those of shallow unconfined groundwater, revealing that upward recharge from intermediate formations is a major source of shallow groundwater in the plains and desert. The estimated residence time of 10.0 kyr at one desert site, indicating that some replenishment of desert aquifers occurred in the late Pleistocene and early Holocene with a wetter and colder climate than at present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allison GB, Gee GW, Tyler SW (1994) Vadose-zone techniques for estimating groundwater recharge in arid and semiarid regions. Soil Sci Soc Am J 58(1):6–14

    Article  Google Scholar 

  • Cartwright I, Weaver TR (2005) Hydrogeochemistry of the Goulburn Valley region of the Murray Basin, Australia: implications for flow paths and resource vulnerability. Hydrogeol J 13(5–6):752–770

    Article  Google Scholar 

  • Chen J, Wang F, Xia X, Zhang L (2002) Major element chemistry of the Changjiang (Yangtze River). Chem Geol 187(3):231–255

    Article  Google Scholar 

  • Chen ZY, Qi JX, Xu JM, Ye H, Nan YJ (2003) Paleoclimatic interpretation of the past 30 ka from isotopic studies of the deep confined aquifer of the North China plain. Appl Geochem 18(7):997–1009

    Article  Google Scholar 

  • Chen FH, Fan YX, Chun X, Madsen DB, Oviatt CG, Zhao H, Yang LP, Sun Y (2008) Preliminary research on the Megalake Jilantai-Hetao in Late Quaternary. Chin Sci Bull 53(11):1725–1739

    Article  Google Scholar 

  • Chen J, Liu X, Wang C et al (2012) Isotopic constraints on the origin of groundwater in the Ordos Basin of northern China. Environ Earth Sci 66(2):505–517

    Article  Google Scholar 

  • Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, New York

    Google Scholar 

  • Coplen TB, Herczeg AL, Barnes C (2000) Isotope engineering-using stable isotopes of the water molecule to solve practical problems. In: Cook PG, Herzeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Boston, pp 79–110

    Chapter  Google Scholar 

  • Currell MJ, Cartwright I, Bradley DC, Han DM (2010) Recharge history and controls on groundwater quality in the Yuncheng Basin, north China. J Hydrol 385(1):216–229

    Article  Google Scholar 

  • Edmunds WM (2003) Renewable and non-renewable groundwater in semi-arid regions. Dev Water Sci 50:265–280

    Article  Google Scholar 

  • Edmunds WM, Ma J, Aeschbach-Hertig W, Kipfer R, Darbyshire DPF (2006) Groundwater recharge history and hydrogeochemical evolution in the Minqin Basin, North West China. Appl Geochem 21(12):2148–2170

    Article  Google Scholar 

  • Eichinger E (1983) A contribution to the interpretation of 14C groundwater ages considering the example of partially confined sandstone aquifer. Radiocarbon 25(2):347–356

    Google Scholar 

  • Evans GV, Otlet RL, Downing A, Monkhouse RA, and Rae G (1979) Some problems in the interpretation of isotope measurements in United Kingdom aquifer. In: Isotope hydrology, vol. 2, pp 639–708. Proceedings of Symposium, Neuherberg, 1978, IAEA-SM228/34

  • Fan YX, Chen FH, Wei GX, Madsen DB, Oviatt CG, Zhao H, Chun X, Yang LP, Fan TL, Li GQ (2010) Potential water sources for Late Quaternary Megalake Jilantai-Hetao, China, inferred from mollusk shell 87Sr/86Sr ratios. J Paleolimnol 43(3):577–587

    Article  Google Scholar 

  • Farid I, Trabelsi R, Zouari K et al (2013) Deciphering the interaction between quaternary and continental Sabkhas aquifers in Central Tunisia using hydrochemical and isotopic tools. Environ Earth Sci 70:3289–3309

    Article  Google Scholar 

  • Fisher RS, Mullican WF (1997) Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the northern Chihuahuan Desert, Trans-Pecos, Texas, USA. Hydrogeol J 5(2):4–16

    Article  Google Scholar 

  • Fontes JC, Gamier JM (1979) Determination of the initial 14C activity of the total dissolved carbon: a review of the existing models and a new approach. Water Resour Res 15(2):399–413

    Article  Google Scholar 

  • Gates JB, Edmunds WM, Darling WG, Ma J, Pang Z, Young AA (2008) Conceptual model of recharge to southeastern Badain Jaran Desert groundwater and lakes from environmental tracers. Appl Geochem 23(12):3519–3534

    Article  Google Scholar 

  • Gee GW, Hillel D (1988) Groundwater recharge in arid regions: review and critique of estimation methods. Hydrol Process 2(3):255–266

    Article  Google Scholar 

  • Geng K, Chen YF (1990) Formation, development and evolution of Jilantai salt-lake, Inner Mongolia. Acta Geogr Sin 45(3):341–349 (in Chinese)

    Google Scholar 

  • Geng K, Hu CY, Liu J (1989) Quaternary lake evolution in the Jilantai region. J Arid Land Res Environ 3(2):26–33 (in Chinese)

    Google Scholar 

  • Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170(3962):1088–1090

    Article  Google Scholar 

  • Glynn PD, Plummer LN (2005) Geochemistry and the understanding of groundwater systems. Hydrogeol J 13(1):263–287

    Article  Google Scholar 

  • Guo HD, Liu H, Wang XY, Shao Y, Sun Y (2000) Subsurface old drainage detection and paleoenvironment analysis using spaceborne radar images in Alxa Plateau. Sci China Ser D 43(4):439–448

    Article  Google Scholar 

  • Ma J, He J, Q S, Zhu G, Zhao W, Mike Edmunds, Zhao Y (2012) Groundwater recharge and evolution in the Dunhuang Basin, northwestern China. Appl Geochem. http://dx.doi.org/10.1016/j.apgeochem.2012.10.007

  • Hem JD (1985) Study and interpretation of the chemical characteristics of natural water, Water-Supply Pager 2254, 3rd edn. U.S. Geological Survey, Alexandria, VA

  • Herczeg AL, Edmunds WM (2000) Inorganic ions as tracers. In: Cook PG, Herzeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Boston, pp 31–78

    Chapter  Google Scholar 

  • Hill D (1984) Diffusion coefficients of nitrate, chloride, sulphate and water in cracked and uncracked Chalk. J Soil Sci 35(1):27–33

    Article  Google Scholar 

  • Ingerson E, Pearson FJ Jr (1964) Estimation of age and rate of motion of groundwater by the 14C-method. In: Miyake Y, Koyama T (eds) Recent researches on the fields of atmosphere, hydrosphere, and nuclear geochemistry. Sugawara Festival Volume, Maruzen Co., Tokyo, pp 263–283

  • Jones BF, Deocampo DM (2003) Geochemistry of Saline Lakes. Treatise Geochem 5:393–424

    Article  Google Scholar 

  • Kreuzer AM, Rohden CV, Friedrich R, Chen Z, Shi J, Hajdas I, Aeschbach-Hertig W (2009) A record of temperature and monsoon intensity over the past 40 kyr from groundwater in the North China Plain. Chem Geol 259(3):168–180

    Article  Google Scholar 

  • Liu XQ, Ge WS (2002) Remote sensing interpretation of regional geological characteristics and the formation and evolution of Jilantai salt lake. Oceanol Limnol Sin 33:145–150 (in Chinese)

    Google Scholar 

  • Ma JZ, Wang XS, Edmunds WM (2005) The characteristics of ground-water resources and their changes under the impacts of human activity in the arid northwest China—a case study of the Shiyang River Basin. J Arid Environ 61(2):277–295

    Article  Google Scholar 

  • Ma J, Ding Z, Edmunds WM, Gates JB (2009) Limits to recharge of groundwater from Tibetan plateau to the Gobi desert, implications for water management in the mountain front. J Hydrol 364(1):128–141

    Article  Google Scholar 

  • Mahlknecht J, Schneider JF, Merkel BJ, Navarro LI, Bernasconi SM (2004) Groundwater recharge in a sedimentary basin in semi-arid Mexico. Hydrogeol J 12(5):511–530

    Article  Google Scholar 

  • Mclean W, Jankowski J, Lavitt N (2000) Groundwater quality and sustainability in an alluvial aquifer, Australia. In: Sililo O (ed) Groundwater: past achievements and future challenges. AA Balkema, Rotterdam, pp 567–573

    Google Scholar 

  • Ningxia Institute of Geologic Engineering Investigation, Alashan Institute of Water Conservancy Survey and Design (2006) Report on hydrogeological of Alashan regional, Inner Mongolia (in Chinese)

  • Pang XL, Hu DS (2009) Environment evolution and salt forming process of Jilantai Salt Lake since 22 ka BP. J Desert Res 29:190–199 (in Chinese)

    Google Scholar 

  • Qian H, Li PY, Wu JH, Zhou YH (2013) Isotopic characteristics of precipitation, surface and ground waters in the Yinchuan plain, Northwest China. Environ Earth Sci 70:57–70

    Article  Google Scholar 

  • Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20(15):3335–3370

    Article  Google Scholar 

  • Shen ZL, Zhu WH, Zhong Z (1993) Basic of hydrogeochemistry. Geol Press, Beijing (in Chinese)

    Google Scholar 

  • Shi Y, Zhang X (1995) The influence of climate changes on the water resources in arid areas of northwest China. Sci China Ser B 25(9):968–977 (in Chinese)

    Google Scholar 

  • Subyani AM (2004) Use of chloride-mass balance and environmental isotopes for evaluation of groundwater recharge in the alluvial aquifer, Wadi Tharad, west Saudi Arabia. Environ Geol 46(6–7):741–749

    Article  Google Scholar 

  • Tamers MA (1975) Validity of radiocarbon dates on groundwater. Geophys surv 2(2):217–239

    Article  Google Scholar 

  • Unit 710 of China People’s Liberation Army (1979) Areal hydrogeological survey report for Jilantai area, pp 20–46 (in Chinese)

  • Vogel JC, Grootes PM, Mook WG (1970) Isotope fractionation between gaseous and dissolved carbon dioxide. Z Phy 230(3):225–238

    Article  Google Scholar 

  • Wang L, Xu JH, Qian YP (2001) Statement of research on characteristic and law of the yellow river flow and sediment. In: Liu CM, Chen XG (eds) Evolving law and maintaining mechanism of renewable capacity of water resources in the Yellow River Basin. The Yellow River Water Conservancy Press, Zhengzhou, pp 153–158 (in Chinese)

    Google Scholar 

  • Wang X, Dong Z, Yan P, Zhang J, Qian G (2005) Wind energy environments and dunefield activity in the Chinese deserts. Geomorphology 65(1):33–48

    Article  Google Scholar 

  • Wilson JL, Guan H (2004) Mountain-block hydrology and mountain-front recharge. Groundwater recharge in a desert environment: the Southwestern United States. Water Sci Appl Ser 9:113–137

    Article  Google Scholar 

  • Xu H, Hou Z, An Z, Liu X, Dong J (2010) Major ion chemistry of waters in Lake Qinghai catchments, NE Qinghai-Tibet plateau, China. Quat Int 212(1):35–43

    Article  Google Scholar 

  • Yang X (2006) Chemistry and late quaternary evolution of ground and surface waters in the area of Yabulai Mountains, Western Inner Mongolia, China. Catena 66(1):135–144

    Article  Google Scholar 

  • Yang LP (2008) Reconstruction of Paleo-Megalake “Jilantai-Hetao” based on remote sensing and DEM. [PhD thesis]. Lanzhou University, China (in Chinese)

  • Yang LP, Chen FH, Chun X, Fan YX, Sun Y, Madsen DB, Zhang XQ (2008) The Jartai Salt Lake shorelines in northwestern dryland China revealed by remote sensing images. J Arid Environ 53(11):1725–1739

    Google Scholar 

  • Zhai YZ, Wang JS, Teng YG, Zuo R (2013) Hydrogeochemical and isotopic evidence of groundwater evolution and recharge in aquifers in Beijing Plain, China. Environ Earth Sci 69:2167–2177

    Article  Google Scholar 

  • Zhu GF, Li ZZ, Su YH, Ma JZ, Zhang YY (2007) Hydrogeochemical and isotope evidence of groundwater evolution and recharge in Minqin Basin, Northwest China. J Hydrol 333(2):239–251

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Nos. 41271039 and 41172163), the Fundamental Research Funds for the Central Universities, and the Key grant Project of the Chinese Ministry of Education (No. 310005). This work also forms part of the 111 project (No. B06026), the wider UK-China research collaboration, the program for New Century Excellent Talents in University (No. NCET-12-0251), and the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2013-k17). We thank Xifen Zhu, Jianhua He, Xiang Xu, Can Ma and Jingfang Wang for their assistance with our field work and laboratory analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxiao Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, G., Chen, F., Ma, J. et al. Groundwater recharge and evolution of water quality in China’s Jilantai Basin based on hydrogeochemical and isotopic evidence. Environ Earth Sci 72, 3491–3506 (2014). https://doi.org/10.1007/s12665-014-3257-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3257-y

Keywords

Navigation