Skip to main content

Advertisement

Log in

Hydrochemistry to delineate groundwater flow conditions in the Mogher Al Mer area (Damascus Basin, Southwestern Syria)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The hydrochemistry of groundwater from the Mogher Al Mer area, located in southwestern Syria, has been used as a tool to identify and assess the hydrogeological systems and associated conditions. In this arid region of Syria, groundwater is considered as the main source of water supply for both drinking and irrigation purposes. The detailed description of hydrogeochemical conditions, including major ions, physico-chemical and in situ field parameters, has underlined the very complex variability of the stratigraphic sequences and hence the numerous hydrogeological units within the study area. On the one hand, groundwater chemical signature is found to be mainly controlled by the water–rock interaction processes in the mountainous western part of the study area. On the other hand, anthropogenic influences are observed in the eastern plain. In terms of recharge mechanisms, the region can be considered as a part of a main intermediate or even regional flow system instead of a local one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aghazadeh N, Mogaddam AA (2011) Investigation of hydrochemical characteristics of groundwater in the Harzandat aquifer, Northwest of Iran. Environ Monit Assess 176:183–195

    Article  Google Scholar 

  • Al-Charideh A (2011) Environmental isotope study of groundwater discharge from the large karst springs in West Syria: a case study of Figeh and Al-sin springs. Environ Earth Sci 63:1–10

    Article  Google Scholar 

  • Al-Charideh A (2012a) Geochemical and isotopic characterization of groundwater from shallow and deep limestone aquifers system of Aleppo basin (north Syria). Environ Earth Sci 65:1157–1168

    Article  Google Scholar 

  • Al-Charideh A (2012b) Recharge rate estimation in the Mountain karst aquifer system of Figeh spring, Syria. Environ Earth Sci 65:1169–1178

    Article  Google Scholar 

  • Al-Charideh A, Abou-Zakhem B (2009) Geochemical and isotopic characterization of groundwater from the Paleogene limestone aquifer of the Upper Jezireh, Syria. Environ Earth Sci 59:1065–1078

    Article  Google Scholar 

  • Anastasiadis P (2003) Vulnerability of groundwater to agricultural activities Pollution. In: Proceedings of the 8th international conference on environmental science and technology, Lemnos Island, Greece, 8–10 September Full paper, vol B, pp 24–30

  • Angelakis AN (2000) Water resources management in SAR, with emphasis on non-conventional sources. FAO RNE, Egypt

    Google Scholar 

  • Appelo CAJ, Postma D (1993) Geochemistry, groundwater and pollution. A.A. Balkema, Rotterdam

    Google Scholar 

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. Taylor & Francis, Amsterdam

  • Barbieri P, Adami G, Favretto A, Lutman A, Avoscan W, Reisenhofer E (2001) Robust cluster analysis for detecting physicochemical typologies of freshwater from wells of the plain of Friuli (north-eastern Italy). Anal Chim Acta 440:161–170

    Article  Google Scholar 

  • Barbieri M, Boschetti T, Petitta M, Tallini M (2005) Stable isotope (2H, 18O and 87Sr/86Sr) and hydrochemistry monitoring for groundwater hydrodynamics analysis in a karst aquifer (Gran Sasso, Central Italy). Appl Geochem 20:2063–2081

    Article  Google Scholar 

  • Batiot C, Emblanch C, Blavoux B (2003) Carbone organique total (COT) et magnésium (Mg+2): deux traceurs complémentaires du temps de séjour dans l’aquifère karstique Total Organic Carbon (TOC) and magnesium (Mg+2): two complementary tracers of residence time in karstic systems. CR Geosci 335(2):205–214

    Article  Google Scholar 

  • Bicalho CC, Batiot-Guilhe C, Seidel JL, Exter SV, Jourde H (2012) Geochemical evidence of water source characterization and hydrodynamic responses in a karst aquifer. J Hydrol 450–451:206–218

    Article  Google Scholar 

  • Burdon DJ, Safadi C (1964) The karst groundwater of Syria. J Hydrol 2:324–347

    Article  Google Scholar 

  • Capaccioni B, Didero M, Paletta C, Salvadori P (2001) Hydrochemistry of groundwater from carbonate formation with basal gypsiferous layers. J Hydrol 253:14–26

    Article  Google Scholar 

  • Deutsch WJ (1997) Groundwater geochemistry: fundamentals and application to contamination. CRC Press, Boca Raton

    Google Scholar 

  • Domenico PA, Schwartz FW (1990) Physical and chemical hydrogeology. Wiley, New York, p 824

  • Drever JI (1988) The geochemistry of natural waters. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Dubertret L (1932) L’Hydrologie et aperçu sur l’Hydrographie de la Syrie et du Liban dans leurs relations avec la géologie. Rev Géogr Phys Géol Dynamique, TVI fas.4

  • Edmunds WM, Smedley PL (2000) Residence time indicators in groundwater: the East Midlands Triassic sandstone aquifer. Appl Geochem 15(6):737–752

    Article  Google Scholar 

  • Edmunds WM, Ma JZ, Aeschbach-Hertig W, Kipfer R, Darbyshire DPF (2006) Groundwater recharge history and hydrogeochemical evolution in the Minqin Basin, North West China. Appl Geochem 21:2148–2170

    Article  Google Scholar 

  • European Commission (1995) COST Action 65: hydrogeological aspects of groundwater protection in karstic areas. Final report. EUR 16457, Brussels

  • Fairchild IJ, Borsato A, Tooth AF, Frisia S, Hawkesworth CJ, Huang Y, McDermott F, Spiro B (2000) Controls on trace element (Sr-Mg) compositions of carbonate cave waters: implications for speleothem climatic records. Chem Geol 166(3–4):255–269

    Article  Google Scholar 

  • FAO (1993) Integrated rural water management. In: Proceedings of the technical consultation on integrated water management, Rome, Italy

  • Flakova R (1998) Formation and changes of groundwater chemical composition of the Western Carpathian carbonate systems. ACTA Geologica Universitatis Comenianae Nr. 53. Bratislava, Slovakia, pp 5–25

  • Folch A, Mencio A, Puig R, Soler A, Mas-Pla J (2011) Groundwater development effects on different scale hydrogeological systems using head, hydrochemical and isotopic data and implications for water resources management: the Selva basin (NE Spain). J Hydrol 403:83–102

    Article  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Guendouz A, Moulla AS, Edmunds WM, Zouari K, Shand P, Mamou A (2003) Hydrogeochemical and isotopic evolution of water in the Complexe Terminal aquifer in the Algerian Sahara. Hydrogeol J 11:483–495

    Article  Google Scholar 

  • Guler C, Thyne GD (2004a) Delineation of hydrochemical facies distribution in a regional groundwater system by means of fuzzy c-means clustering. Water Resour Res 40:1–11

    Google Scholar 

  • Guler C, Thyne GD (2004b) Hydrologic and geologic factors controlling surface and groundwater chemistry in Indian Wells-Owens Valley area, southeastern California, USA. J Hydrol 285:177–198

    Article  Google Scholar 

  • Guler C, Thyne GD, McCray JE, Turner KA (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeology J10:455–474

    Article  Google Scholar 

  • Han G, Liu C (2004) Water geochemistry controlled by carbonate dissolution: a study of the river waters draining karst-dominated terrain, Guizhou Province, China. Chem Geol 204:1–21

    Article  Google Scholar 

  • Hem JD (1985) Study and interpretation of the chemical characteristics of natural water, 3rd edn. U.S. Geological Survey, Water Supply Paper 2254

  • Hsu KJ (1963) Solubility of dolomite and the composition of Florida groundwaters. J Hydrol 1:288–310

    Article  Google Scholar 

  • Huneau F, Dakoure D, Celle-Jeanton H, Vitvar T, Ito M, Compaore NF, Traore S, Jirakova H, Le Coustumer P (2011) Flow pattern and residence time of groundwater within the south-eastern Taoudeni sedimentary basin (Burkina Faso, Mali). J Hydrol 409:423–439

    Article  Google Scholar 

  • INECO Studies and Integration Consulting (2009) Institutional framework and decision-making practices for water management in Syria. Towards the development of strategy for water pollution prevention and control in the Barada River Basin, Greater Damascus area. Contract No: INCO‐CT‐2006‐517673

  • Jianhua S, Qi F, Xiaohu W, Yonghong S, Haiyang X, Zongqiang C (2009) Major ion chemistry of groundwater in the extreme arid region northwest China. Environ Geol 57:1079–1087

    Article  Google Scholar 

  • JICA (2001) The study of water resources development in the western and central basins in Syrian Arab Republic, phase I, Ministry of Irrigation (MOI) (in Arabic) (unpublished report)

  • Kattan Z (1997) Environmental isotope study of the major karst springs in Damascus limestone aquifer systems: case of the Figeh and Barada springs. J Hydrol 193:161–182

    Article  Google Scholar 

  • Kattan Z (2006) Characterization of surface water and groundwater in the Damascus Ghotta basin: hydrochemical and environmental isotopes approaches. Environ Geol 51:173–201

    Article  Google Scholar 

  • Kortatsi BK (2007) Hydrochemical framework of groundwater in the Ankobra Basin, Ghana. Aquat Geochem 13:41–74

    Article  Google Scholar 

  • La-Moreaux PE, Hughes TH, Memon BA, Lineback N (1989) Hydrogeologic assessment—Figeh Spring, Damascus, Syria. Environ Geol Water Sci 13(2):73–127

    Article  Google Scholar 

  • Langmuir D (1971) The geochemistry of some carbonate groundwaters in central Pennsylvania. Geochim Cosmochim Acta 35:1023–1045

    Article  Google Scholar 

  • Lawrence AR, Gooddy DC, Kanatharana P, Meesilp M, Ramnarong V (2000) Groundwater evolution beneath Hat Yai, a rapidly developing city in Thailand. Hydrogeol J 8:564–575

    Article  Google Scholar 

  • Li X, Zhang L, Hou X (2008) Use of hydrogeochemistry and environmental isotopes for evaluation of groundwater in Qingshuihe Basin, northwestern China. Hydrogeol J 16:335–348

    Article  Google Scholar 

  • López-Chicano M, Bouamama M, Vallejos A, Pulido-Bosch A (2001) Factors which determine the hydrogeochemical behaviour of karstic springs. A case study from the Betic Cordilleras, Spain. Appl Geochem 16(9–10):1179–1192

    Article  Google Scholar 

  • Ma JZ, Edmunds WM (2006) Groundwater and lake evolution in the Badain Jaran desert ecosystem, Inner Mongolia. Hydrogeol J 14:1231–1243

    Article  Google Scholar 

  • Ma JZ, Wang XS, Edmunds WM (2005) The characteristics of groundwater resources and their changes under the impacts of human activity in the arid Northwest China, a case study of the Shiyang River Basin. J Arid Environ 61:277–295

    Article  Google Scholar 

  • Mahlknecht J, Gárfias-Solis J, Aravena R, Tesch R (2006) Geochemical and isotopic investigations on groundwater residence time and flow in the Independence Basin, Mexico. J Hydrol 324:283–300

    Article  Google Scholar 

  • McMahon PB, Böhlke JK, Christenson SC (2004) Geochemistry, radiocarbon ages, and paleorecharge conditions along a transect in the central High Plains aquifer, southwestern Kansas, USA. Appl Geochem 19(11):1655–1686

    Article  Google Scholar 

  • Meslmani Y, Wardeh M F (2010) Strategy and action plan for adaptation to climate change in Syria, (INC-SY_ Strategy & NAPA-En). Ministry of State for Environment Affairs (MSEA)/United Nations Development Programme (UNDP) Damascus, Syria

  • MOI (2005) Annual water resources report of Barada and Awaj Basin, Damascus, Syria (in Arabic) (unpublished report)

  • Moral F, Cruz-Sanjulián JJ, Olías M (2008) Geochemical evolution of groundwater in the carbonate aquifers of Sierra de Segura (Betic Cordillera, southern Spain). J Hydrol 360:281–296

    Article  Google Scholar 

  • Mourad KA, Berndtsson R (2011) Syrian water resources between the present and the future. Air Soil Water Res 4:93–100. doi:10.4137/ASWR.S8076

    Article  Google Scholar 

  • Palmer PC, Gannett MW, Stephen R, Hinkle SR (2007) Isotopic characterization of three groundwater recharge sources and inferences for selected aquifers in the upper Klamath Basin of Oregon and California, USA. J Hydrol 336:17–29

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) PHREEQC for windows version 1.4.07. A hydrogeochemical transport model. U.S. Geological Survey Software

  • Plummer LN (1977) Defining reactions and mass transfer in part of the Floridan aquifer. Water Resour Res 13(5):801–812

    Article  Google Scholar 

  • Plummer LN, Wigley TML, Parkhurst DL (1978) The kinetics of calcite dissolution in CO2 water systems at 5–60 °C and 0.0–1.0 atm CO2. Am J Sci 278(2):179–216

    Article  Google Scholar 

  • Plummer LN, Busby JF, Lee RW, Hanshaw BB (1990) Geochemical modeling of the Madison aquifer in parts of Montana, Wyoming, and south Dakota. Water Resour Res 26(9):1981–2014

    Article  Google Scholar 

  • Ponikarov VO (1967) The geology of Syria, explanatory notes on the map of Syria, Scale 1:500,000. Part II. Mineral deposits and underground water resources. Technoexport, Moscow

    Google Scholar 

  • Rakhmatullaev S, Huneau F, Kazbekov J, Le Coustumer P, Jumanov J, El Oifi B, Motelica-Heino M, Hrkal Z (2010) Groundwater resources and management in the Amu Darya River Basin (Central Asia). Environ Earth Sci 59:1183–1193

    Article  Google Scholar 

  • Rakhmatullaev S, Huneau F, Kazbekov J, Celle-Jeanton H, Motelica-Heino M, Le Coustumer P, Jumanov J (2012) Groundwater resources of Uzbekistan: an environmental and operational overview. Cent Eur J Geosci 4:67–80

    Article  Google Scholar 

  • RDAWSA (2006) Interim report—hydrogeological study of Mougher El Mer Area, Damascus Rural water and sanitation project

  • Schoeller H (1956) Géochimie des eaux souterraines. Application aux eaux des gisements de petrole. Soc Ed Technip, Paris

  • Selkhozpromexport (1986) Water resources use in Barada and Awaj Basins for irrigation of crops, Syria Arab Republic. USSR, Ministry of Land Reclamation and Water Management, Moscow

  • Stadler S, Geyh MA, Ploethner D, Koeniger P (2012) The deep Cretaceous aquifer in the Aleppo and Steppe basins of Syria: assessment of the meteoric origin and geographic source of the groundwater. Hydrogeol J 20:1007–1026. doi:10.1007/s10040-012-0862-2

    Article  Google Scholar 

  • Stuyfzand PJ (1989) A new hydrochemical classification of water type. IAHS Red Books 182:89–98

    Google Scholar 

  • Suk H, Lee K–K (1999) Characterization of a ground water hydrochemical system through multivariate analysis: clustering into groundwater zones. Ground Water 37:358–366

    Article  Google Scholar 

  • Vengosh A, Rosenthal E (1994) Saline groundwater in Israel: its bearing on the water crisis in the country. J Hydrol 156:389–430

    Article  Google Scholar 

  • Wen X, Wu Y, Zhang Y, Liu F (2005) Hydrochemical characteristics and salinity of groundwater in the Ejina basin, northwestern China. Environ Geol 48:665–675

    Article  Google Scholar 

  • Wolfart R (1964) Hydrogeology of the Damascus Basin (southwest-Syria). IAHS Red Books 64:402–413

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Huneau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asmael, N.M., Huneau, F., Garel, E. et al. Hydrochemistry to delineate groundwater flow conditions in the Mogher Al Mer area (Damascus Basin, Southwestern Syria). Environ Earth Sci 72, 3205–3225 (2014). https://doi.org/10.1007/s12665-014-3226-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3226-5

Keywords

Navigation